def __init__(self,
                 nNeurons,
                 mNeurons,
                 learningrate=0.01,
                 neighbourdecay=0.9999):
        # KohonenMap of IMG_SIZE dimensions and a 2x2 grid. (try 4x1 later)
        self.som = KohonenMap(IMG_SIZE, nNeurons, mNeurons)
        self.som.learningrate = learningrate
        self.som.neighbourdecay = neighbourdecay

        self.emo_clusters = [[-1] * mNeurons for x in range(nNeurons)]
  def __init__(self, nNeurons, mNeurons, learningrate=0.01, neighbourdecay=0.9999):
    # KohonenMap of IMG_SIZE dimensions and a 2x2 grid. (try 4x1 later)
    self.som = KohonenMap(IMG_SIZE, nNeurons, mNeurons);
    self.som.learningrate = learningrate
    self.som.neighbourdecay = neighbourdecay

    self.emo_clusters = [ [-1]*mNeurons for x in range(nNeurons)]
class UnsupervisedFacialClassifier:
  som = None
  emo_clusters = []

  def __init__(self, nNeurons, mNeurons, learningrate=0.01, neighbourdecay=0.9999):
    # KohonenMap of IMG_SIZE dimensions and a 2x2 grid. (try 4x1 later)
    self.som = KohonenMap(IMG_SIZE, nNeurons, mNeurons);
    self.som.learningrate = learningrate
    self.som.neighbourdecay = neighbourdecay

    self.emo_clusters = [ [-1]*mNeurons for x in range(nNeurons)]
    
  def train(self, inputData, epochs, test_proportion=0.25, verbose=True):
    # Sort the known emotions into image piles, to assosciate a cluster with an
    # emotion after training, store that assosciation in emo_cluster
    cluster_identification_images = {
      Emotion.SAD: [],
      Emotion.SMILING: [],
      Emotion.CALM: [],
      Emotion.ASTONISHED: []
    }

    # Dictionary to return with performance metrics etc.
    train_perf = {}

    train_faces = []
    test_faces = []
    for entry in inputData:
      if (random() > test_proportion):
        # Build training set with 75% of inputData
        (emotion, img) = entry
        cluster_identification_images[emotion].append(img)
        train_faces.append(img)
      else:
        # Build test set with the other 25%
        test_faces.append(entry)

    i = 0
    #while (self.som.neighbours > 0.5 or i < epochs):
    while (i < epochs):
      for img in train_faces:
        # Not sure if this can be done with som.activateOnDataset()
        self.som.activate(img)
        self.som.backward()

      i += 1

      if verbose:
        if not (i % 20):
          print "SOM neighbors: %f" % self.som.neighbours
          print "SOM winner err: %f" % self.som.winner_error

    # Finished training SOM
    train_perf['epochs'] = i
    train_perf['final_som_winner_err'] = self.som.winner_error

    # Correlate N SOM clusters with N emotions
    training_error = []
    for emotion in cluster_identification_images.keys():
      emo_count = zeros((self.som.nNeurons, self.som.mNeurons))

      for img in cluster_identification_images[emotion]:
        self.som.activate(img)
        emo_count[self.som.winner[0]][self.som.winner[1]] += 1
      dominant_node = maximum_position(emo_count)
      training_error.append( 1.0 - 
        (1.0*emo_count[dominant_node[0]][dominant_node[1]]/
        len(cluster_identification_images[emotion]))
      )
      self.emo_clusters[dominant_node[0]][dominant_node[1]] = emotion

    # Record training error
    train_perf['training_error'] = training_error
    train_perf['avg_training_error'] = mean(training_error)

    train_perf['emo_clusters'] = self.emo_clusters

    # Start the testing set
    if verbose: print "Testing:"
    error_count = 0

    for entry in test_faces:
      (expectd_emo, img) = entry

      determined_emo = self.classify(img, verbose=False)
      if (expectd_emo != determined_emo):
        error_count += 1

        if verbose: print "{>_<} Expected %s, got %s" % \
            (Emotion.to_s[determined_emo], Emotion.to_s[expectd_emo])
      else:
        if verbose: print "{^-^} Classified a %s face correctly." % \
            Emotion.to_s[determined_emo]

    train_perf['avg_testing_error'] = (1.0*error_count / len(test_faces))

    if verbose: print train_perf
    return train_perf


  def classify(self, facialData, verbose=True ):
    self.som.activate(facialData)
    emotion = self.emo_clusters[self.som.winner[0]][self.som.winner[1]]

    if verbose:
      print "This face looks %s to me" % Emotion.to_s[emotion]

    return emotion
from pylab import ion, ioff, figure, draw, contourf, clf, show, hold, plot
from scipy import diag, arange, meshgrid, where
from numpy.random import multivariate_normal

from numpy import zeros

cluster_data = []
#means = [(-1,0),(2,4),(3,1)]
means = [(-10,10),(10,10),(0,0),(10,-10)]
cov = [diag([1,1]), diag([0.5,1.2]), diag([1.5,0.7]), diag([1.5,0.7])]
for n in xrange(400):
  for klass in range(len(means)):
    cluster_data.append(multivariate_normal(means[klass],cov[klass]))

som = KohonenMap(2, 9, 9)

pylab.ion()
p = pylab.plot(som.neurons[:,:,0].flatten(), som.neurons[:,:,1].flatten(), 's')
pylab.axis([-15,15,-15,15])

i = 0
for j in range(40):
  print j
  for data in cluster_data:
      i += 1
      # one forward and one backward (training) pass
      som.activate(data)
      som.backward()

      # plot every 100th step
Exemple #5
0
from pylab import ion, ioff, figure, draw, contourf, clf, show, hold, plot
from scipy import diag, arange, meshgrid, where
from numpy.random import multivariate_normal

from numpy import zeros

cluster_data = []
#means = [(-1,0),(2,4),(3,1)]
means = [(-10, 10), (10, 10), (0, 0), (10, -10)]
cov = [diag([1, 1]), diag([0.5, 1.2]), diag([1.5, 0.7]), diag([1.5, 0.7])]
for n in xrange(400):
    for klass in range(len(means)):
        cluster_data.append(multivariate_normal(means[klass], cov[klass]))

som = KohonenMap(2, 9, 9)

pylab.ion()
p = pylab.plot(som.neurons[:, :, 0].flatten(), som.neurons[:, :, 1].flatten(),
               's')
pylab.axis([-15, 15, -15, 15])

i = 0
for j in range(40):
    print j
    for data in cluster_data:
        i += 1
        # one forward and one backward (training) pass
        som.activate(data)
        som.backward()
class UnsupervisedFacialClassifier:
    som = None
    emo_clusters = []

    def __init__(self,
                 nNeurons,
                 mNeurons,
                 learningrate=0.01,
                 neighbourdecay=0.9999):
        # KohonenMap of IMG_SIZE dimensions and a 2x2 grid. (try 4x1 later)
        self.som = KohonenMap(IMG_SIZE, nNeurons, mNeurons)
        self.som.learningrate = learningrate
        self.som.neighbourdecay = neighbourdecay

        self.emo_clusters = [[-1] * mNeurons for x in range(nNeurons)]

    def train(self, inputData, epochs, test_proportion=0.25, verbose=True):
        # Sort the known emotions into image piles, to assosciate a cluster with an
        # emotion after training, store that assosciation in emo_cluster
        cluster_identification_images = {
            Emotion.SAD: [],
            Emotion.SMILING: [],
            Emotion.CALM: [],
            Emotion.ASTONISHED: []
        }

        # Dictionary to return with performance metrics etc.
        train_perf = {}

        train_faces = []
        test_faces = []
        for entry in inputData:
            if (random() > test_proportion):
                # Build training set with 75% of inputData
                (emotion, img) = entry
                cluster_identification_images[emotion].append(img)
                train_faces.append(img)
            else:
                # Build test set with the other 25%
                test_faces.append(entry)

        i = 0
        #while (self.som.neighbours > 0.5 or i < epochs):
        while (i < epochs):
            for img in train_faces:
                # Not sure if this can be done with som.activateOnDataset()
                self.som.activate(img)
                self.som.backward()

            i += 1

            if verbose:
                if not (i % 20):
                    print "SOM neighbors: %f" % self.som.neighbours
                    print "SOM winner err: %f" % self.som.winner_error

        # Finished training SOM
        train_perf['epochs'] = i
        train_perf['final_som_winner_err'] = self.som.winner_error

        # Correlate N SOM clusters with N emotions
        training_error = []
        for emotion in cluster_identification_images.keys():
            emo_count = zeros((self.som.nNeurons, self.som.mNeurons))

            for img in cluster_identification_images[emotion]:
                self.som.activate(img)
                emo_count[self.som.winner[0]][self.som.winner[1]] += 1
            dominant_node = maximum_position(emo_count)
            training_error.append(
                1.0 - (1.0 * emo_count[dominant_node[0]][dominant_node[1]] /
                       len(cluster_identification_images[emotion])))
            self.emo_clusters[dominant_node[0]][dominant_node[1]] = emotion

        # Record training error
        train_perf['training_error'] = training_error
        train_perf['avg_training_error'] = mean(training_error)

        train_perf['emo_clusters'] = self.emo_clusters

        # Start the testing set
        if verbose: print "Testing:"
        error_count = 0

        for entry in test_faces:
            (expectd_emo, img) = entry

            determined_emo = self.classify(img, verbose=False)
            if (expectd_emo != determined_emo):
                error_count += 1

                if verbose:                    print "{>_<} Expected %s, got %s" % \
            (Emotion.to_s[determined_emo], Emotion.to_s[expectd_emo])
            else:
                if verbose:                    print "{^-^} Classified a %s face correctly." % \
            Emotion.to_s[determined_emo]

        train_perf['avg_testing_error'] = (1.0 * error_count / len(test_faces))

        if verbose: print train_perf
        return train_perf

    def classify(self, facialData, verbose=True):
        self.som.activate(facialData)
        emotion = self.emo_clusters[self.som.winner[0]][self.som.winner[1]]

        if verbose:
            print "This face looks %s to me" % Emotion.to_s[emotion]

        return emotion