def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), #tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std']), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ #tr.RandomHorizontalFlip(), #tr.RandomScaleCrop(base_size=self.base_size, crop_size=self.crop_size), ##tr.RandomGaussianBlur(), tr.FixScaleCrop(crop_size=self.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_pair_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), tr.HorizontalFlip(), tr.GaussianBlur(), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std'], if_pair=True), tr.ToTensor(if_pair=True), ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ #tr.RandomHorizontalFlip(), # to make the image in the same batch has same shape tr.FixScaleCrop(crop_size=self.args.crop_size), #tr.RandomGaussianBlur(), #tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)