Exemple #1
0
    def redraw_monocular(self, drawable):
        width, height = cv.GetSize(drawable.scrib)

        display = cv.CreateMat(max(480, height), width + 100, cv.CV_8UC3)
        cv.Zero(display)
        cv.Copy(drawable.scrib, cv.GetSubRect(display, (0, 0, width, height)))
        cv.Set(cv.GetSubRect(display, (width, 0, 100, height)),
               (255, 255, 255))

        self.buttons(display)
        if not self.c.calibrated:
            if drawable.params:
                for i, (label, lo, hi, progress) in enumerate(drawable.params):
                    (w, _), _ = cv.GetTextSize(label, self.font)
                    cv.PutText(display, label,
                               (width + (100 - w) / 2, self.y(i)), self.font,
                               (0, 0, 0))
                    color = (0, 255, 0)
                    if progress < 1.0:
                        color = (0, int(progress * 255.), 255)
                    cv.Line(display, (int(width + lo * 100), self.y(i) + 20),
                            (int(width + hi * 100), self.y(i) + 20), color, 4)

        else:
            cv.PutText(display, "lin.", (width, self.y(0)), self.font,
                       (0, 0, 0))
            linerror = drawable.linear_error
            if linerror < 0:
                msg = "?"
            else:
                msg = "%.2f" % linerror
                #print "linear", linerror
            cv.PutText(display, msg, (width, self.y(1)), self.font, (0, 0, 0))

        self.show(display)
Exemple #2
0
    def find_avarage_colors(self):

        #+----+--C--+----+
        #       |--A--|    |
        #       |--B--|    |
        # +---+-------+---+
        #A_image
        rect = [0, 0, self.small_img.width, self.small_img.height]
        rect_A = (int(rect[2] * 0.25), int(rect[3] * 0.12), int(rect[2] * 0.5),
                  int(rect[3] * 0.38))  #czolo nos
        rect_B = (int(rect[2] * 0.25), int(rect[3] * 0.5), int(rect[2] * 0.5),
                  int(rect[3] * 0.38))  #nos broda
        rect_C = (int(rect[2] * 0.25), 0, int(rect[2] * 0.5),
                  int(rect[3] * 0.12))  #wlosy

        A_image = cv.GetSubRect(self.small_img, rect_A)
        B_image = cv.GetSubRect(self.small_img, rect_B)
        C_image = cv.GetSubRect(self.small_img, rect_C)
        A_av, A_sd = cv.AvgSdv(A_image)
        B_av, B_sd = cv.AvgSdv(B_image)
        C_av, C_sd = cv.AvgSdv(C_image)
        A_av, B_av, C_av = sum(A_av) / float(len(A_av)), sum(B_av) / float(
            len(B_av)), sum(C_av) / float(len(C_av))
        if B_av < 0.0001: B_av = 0.0001
        self.A2B_ratio, self.A_B_color, self.C_color = A_av / float(B_av), (
            A_av + B_av) / 510.0, C_av / 255.0
        return self.A2B_ratio, self.A_B_color, self.C_color
Exemple #3
0
def partitionImage(image_path, NUM_PARTITIONS=5):
    img = cv.LoadImageM(image_path)
    height = img.rows
    width = img.cols
    width_partition = width / NUM_PARTITIONS
    height_partition = height / NUM_PARTITIONS
    y_cur = 0
    x_cur = 0
    partitions = []
    for i in range(0, NUM_PARTITIONS):  #itera linhas
        for j in range(0, NUM_PARTITIONS):  #itera colunas
            if j == NUM_PARTITIONS - 1:  #se ultima coluna
                how_much_left_width = width - x_cur
                if i == NUM_PARTITIONS - 1:  #se ultima coluna e ultima linha
                    how_much_left_height = height - y_cur
                    partitions.append(
                        cv.GetSubRect(img, (x_cur, y_cur, how_much_left_width,
                                            how_much_left_height)))
                else:  #so ultima coluna
                    partitions.append(
                        cv.GetSubRect(img, (x_cur, y_cur, how_much_left_width,
                                            height_partition)))
            else:
                partitions.append(
                    cv.GetSubRect(
                        img,
                        (x_cur, y_cur, width_partition, height_partition)))
            x_cur = x_cur + width_partition  #atualiza posicao da coluna (x)
        y_cur = y_cur + height_partition  #atualiza posicao da linha (y)
        x_cur = 0  #reseta a posicao da coluna (x = 0)
    return partitions
Exemple #4
0
    def run(self):
		
        while True:
            frame = cv.QueryFrame( self.capture)
            
			# Run the cam-shift
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect), track_box) = cv.CamShift(backproject, self.track_window, crit)
                self.track_window = rect

            # If mouse is pressed, highlight the current selected rectangle
            # and recompute the histogram

            if self.drag_start and is_rect_nonzero(self.selection):
				sub = cv.GetSubRect(frame, self.selection)
				save = cv.CloneMat(sub)
				cv.ConvertScale(frame, frame, 0.5)
				cv.Copy(save, sub)
				x,y,w,h = self.selection
				cv.Rectangle(frame, (x,y), (x+w,y+h), (255,255,255))

				sel = cv.GetSubRect(self.hue, self.selection )
				cv.CalcArrHist( [sel], hist, 0)
				(_, max_val, _, _) = cv.GetMinMaxHistValue( hist)
				if max_val != 0:
					cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)        
				elif self.track_window and is_rect_nonzero(self.track_window):
					cv.EllipseBox( frame, track_box, cv.CV_RGB(255,0,0), 3, cv.CV_AA, 0 )		
	   	    cv.ShowImage("Output",frame)
	   	   	cv.WaitKey(0)
Exemple #5
0
def blob_to_input_instance(image, blob, classification_window_width):
    patch_size = classification_window_width * 2 + 1
    small_r = blob_to_rect(
        blob, classification_window_width=classification_window_width)
    big_r = blob_to_rect(
        blob, classification_window_width=classification_window_width * 2)
    if big_r == None or small_r == None:
        return None
    small_patch = cv.CloneMat(cv.GetSubRect(image, small_r.as_cv_rect()))
    big_patch = cv.CloneMat(cv.GetSubRect(image, big_r.as_cv_rect()))
    #cv.ShowImage('patch', small_patch)
    #cv.ShowImage('big_patch', big_patch)
    big_patch_rescaled = cv.CreateImage((int(classification_window_width / 2),
                                         int(classification_window_width / 2)),
                                        8, 3)
    cv.Resize(big_patch, big_patch_rescaled, cv.CV_INTER_LINEAR)

    np_patch_small = np.asarray(small_patch)
    np_patch_big = ad.cv2array(big_patch_rescaled)
    np_resized_small = np.matrix(
        np_patch_small.reshape(patch_size * patch_size * 3, 1))
    np_resized_big = np.matrix(
        np_patch_big.reshape(np_patch_big.shape[0] * np_patch_big.shape[1] * 3,
                             1))
    return np.concatenate((np_resized_small, np_resized_big), axis=0)
Exemple #6
0
def GetCornerType(x, y, img):
    """Get type of corner point: upper left, bottom left, upper right, bottom right, vertical half, horizontal half, 
  also white on dark background or dark on white background. Greyscale image is presumed"""
    x1 = int(x)
    y1 = int(y)
    height = 5
    width = 5
    rect1 = cv.Avg(cv.GetSubRect(img, (x1, y1, width, height)))
    rect2 = cv.Avg(cv.GetSubRect(img, (x1 - width, y1, width, height)))
    rect3 = cv.Avg(cv.GetSubRect(img,
                                 (x1 - width, y1 - height, width, height)))
    rect4 = cv.Avg(cv.GetSubRect(img, (x1, y1 - height, width, height)))
    averages = [rect1[0], rect2[0], rect3[0], rect4[0]]
    clusters = cluster_points(averages)
    if (len(clusters[0]) == 2):
        return ("bad", "")
    else:
        fg, bg = None, None
        corner = None
        if (len(clusters[0]) == 1):
            fg = averages[clusters[0][0]]
            bg = averages[clusters[1][0]]
            corner = clusters[0][0]
        else:
            fg = averages[clusters[1][0]]
            bg = averages[clusters[0][0]]
            corner = clusters[1][0]

        if (fg > bg):
            return (corner, "w")
        else:
            return (corner, "b")
def update_mhi(img, dst, diff_threshold):
    global last
    global mhi
    global storage
    global mask
    global orient
    global segmask
    timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds
    size = cv.GetSize(img) # get current frame size
    idx1 = last
    if not mhi or cv.GetSize(mhi) != size:
        for i in range(N):
            buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
            cv.Zero(buf[i])
        mhi = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        cv.Zero(mhi) # clear MHI at the beginning
        orient = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        segmask = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        mask = cv.CreateImage(size,cv. IPL_DEPTH_8U, 1)
    
    cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale
    idx2 = (last + 1) % N # index of (last - (N-1))th frame
    last = idx2
    silh = buf[idx2]
    cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames
    cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it
    cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI
    cv.CvtScale(mhi, mask, 255./MHI_DURATION,
                (MHI_DURATION - timestamp)*255./MHI_DURATION)
    cv.Zero(dst)
    cv.Merge(mask, None, None, None, dst)
    cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3)
    if not storage:
        storage = cv.CreateMemStorage(0)
    seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA)
    for (area, value, comp_rect) in seq:
        if comp_rect[2] + comp_rect[3] > 100: # reject very small components
            color = cv.CV_RGB(255, 0,0)
            silh_roi = cv.GetSubRect(silh, comp_rect)
            mhi_roi = cv.GetSubRect(mhi, comp_rect)
            orient_roi = cv.GetSubRect(orient, comp_rect)
            mask_roi = cv.GetSubRect(mask, comp_rect)
            angle = 360 - cv.CalcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION)

            count = cv.Norm(silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI
            if count < (comp_rect[2] * comp_rect[3] * 0.05):
                continue

            magnitude = 30.
            center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2))
            cv.Circle(dst, center, cv.Round(magnitude*1.2), color, 3, cv.CV_AA, 0)
            cv.Line(dst,
                    center,
                    (cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)),
                     cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))),
                    color,
                    3,
                    cv.CV_AA,
                    0)
def concat_images(a, b):
    img_height = max(a.height, b.height)
    c = cv.CreateImage((a.width+b.width, img_height), a.depth, a.channels)
    a_area = cv.GetSubRect(c, (0,0, a.width, a.height))
    b_area = cv.GetSubRect(c, (a.width, 0, b.width, b.height))
    cv.Add(a, a_area, a_area)
    cv.Add(b, b_area, b_area)
    return c
Exemple #9
0
 def buttons(self, display):
     x = self.displaywidth
     self.button(cv.GetSubRect(display, (x, 180, 100, 100)), "CALIBRATE",
                 self.c.goodenough)
     self.button(cv.GetSubRect(display, (x, 280, 100, 100)), "SAVE",
                 self.c.calibrated)
     self.button(cv.GetSubRect(display, (x, 380, 100, 100)), "COMMIT",
                 self.c.calibrated)
Exemple #10
0
    def run(self):
        hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0, 180)], 1)
        backproject_mode = False
        while True:
            frame = cv.QueryFrame(self.capture)

            # Convert to HSV and keep the hue
            hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
            cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
            self.hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
            print(self.hue)
            cv.Split(hsv, self.hue, None, None, None)

            # Compute back projection
            backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)

            # Run the cam-shift
            cv.CalcArrBackProject([self.hue], backproject, hist)
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect),
                 track_box) = cv.CamShift(backproject, self.track_window, crit)
                self.track_window = rect

            # If mouse is pressed, highlight the current selected rectangle
            # and recompute the histogram

            if self.drag_start and is_rect_nonzero(self.selection):
                sub = cv.GetSubRect(frame, self.selection)
                save = cv.CloneMat(sub)
                cv.ConvertScale(frame, frame, 0.5)
                cv.Copy(save, sub)
                x, y, w, h = self.selection
                cv.Rectangle(frame, (x, y), (x + w, y + h), (255, 255, 255))

                sel = cv.GetSubRect(self.hue, self.selection)
                cv.CalcArrHist([sel], hist, 0)
                (_, max_val, _, _) = cv.GetMinMaxHistValue(hist)
                if max_val != 0:
                    cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)
            elif self.track_window and is_rect_nonzero(self.track_window):
                cv.EllipseBox(frame, track_box, cv.CV_RGB(255, 0, 0), 3,
                              cv.CV_AA, 0)

            if not backproject_mode:
                #frame=cv.Flip(frame)
                cv.ShowImage("CamShiftDemo", frame)
            else:
                cv.ShowImage("CamShiftDemo", backproject)
            cv.ShowImage("Histogram", self.hue_histogram_as_image(hist))

            c = cv.WaitKey(7)
            if c == 27:
                break
            elif c == ord("b"):
                backproject_mode = not backproject_mode
Exemple #11
0
    def do_camshift(self, cv_image):
        """ Get the image size """
        image_size = cv.GetSize(cv_image)
        image_width = image_size[0]
        image_height = image_size[1]
        
        """ Convert to HSV and keep the hue """
        hsv = cv.CreateImage(image_size, 8, 3)
        cv.CvtColor(cv_image, hsv, cv.CV_BGR2HSV)
        self.hue = cv.CreateImage(image_size, 8, 1)
        cv.Split(hsv, self.hue, None, None, None)

        """ Compute back projection """
        backproject = cv.CreateImage(image_size, 8, 1)

        """ Run the cam-shift algorithm """
        cv.CalcArrBackProject( [self.hue], backproject, self.hist )
        if self.track_window and is_rect_nonzero(self.track_window):
            crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
            (iters, (area, value, rect), track_box) = cv.CamShift(backproject, self.track_window, crit)
            self.track_window = rect
     
        """ If mouse is pressed, highlight the current selected rectangle
            and recompute the histogram """

        if self.drag_start and is_rect_nonzero(self.selection):
            sub = cv.GetSubRect(cv_image, self.selection)
            save = cv.CloneMat(sub)
            cv.ConvertScale(cv_image, cv_image, 0.5)
            cv.Copy(save, sub)
            x,y,w,h = self.selection
            cv.Rectangle(cv_image, (x,y), (x+w,y+h), (255,255,255))

            sel = cv.GetSubRect(self.hue, self.selection )
            cv.CalcArrHist( [sel], self.hist, 0)
            (_, max_val, _, _) = cv.GetMinMaxHistValue(self.hist)
            if max_val != 0:
                cv.ConvertScale(self.hist.bins, self.hist.bins, 255. / max_val)
        elif self.track_window and is_rect_nonzero(self.track_window):
            cv.EllipseBox( cv_image, track_box, cv.CV_RGB(255,0,0), 3, cv.CV_AA, 0 )
            
            roi = RegionOfInterest()
            roi.x_offset = int(min(image_width, max(0, track_box[0][0] - track_box[1][0] / 2)))
            roi.y_offset = int(min(image_height, max(0, track_box[0][1] - track_box[1][1] / 2)))
            roi.width = int(track_box[1][0])
            roi.height = int(track_box[1][1])
            self.ROI.publish(roi)

        cv.ShowImage("Histogram", self.hue_histogram_as_image(self.hist))
        
        if not self.backproject_mode:
            return cv_image
        else:
            return backproject
Exemple #12
0
    def handle_stereo(self, qq):

        (lmsg, lcmsg, rmsg, rcmsg) = qq
        limg = CvBridge().imgmsg_to_cv(lmsg, "mono8")
        rimg = CvBridge().imgmsg_to_cv(rmsg, "mono8")

        if 0:
            cv.SaveImage("/tmp/l%06d.png" % self.i, limg)
            cv.SaveImage("/tmp/r%06d.png" % self.i, rimg)
            self.i += 1

        scm = image_geometry.StereoCameraModel()
        scm.fromCameraInfo(lcmsg, rcmsg)

        bm = cv.CreateStereoBMState()
        if "wide" in rospy.resolve_name("stereo"):
            bm.numberOfDisparities = 160
        if 0:
            disparity = cv.CreateMat(limg.rows, limg.cols, cv.CV_16SC1)
            started = time.time()
            cv.FindStereoCorrespondenceBM(limg, rimg, disparity, bm)
            print time.time() - started
            ok = cv.CreateMat(limg.rows, limg.cols, cv.CV_8UC1)
            cv.CmpS(disparity, 0, ok, cv.CV_CMP_GT)
            cv.ShowImage("limg", limg)
            cv.ShowImage("disp", ok)
            cv.WaitKey(6)
        self.track(CvBridge().imgmsg_to_cv(lmsg, "rgb8"))
        if len(self.tracking) == 0:
            print "No markers found"
        for code, corners in self.tracking.items():
            corners3d = []
            for (x, y) in corners:
                limr = cv.GetSubRect(limg, (0, y - bm.SADWindowSize / 2, limg.cols, bm.SADWindowSize + 1))
                rimr = cv.GetSubRect(rimg, (0, y - bm.SADWindowSize / 2, rimg.cols, bm.SADWindowSize + 1))
                tiny_disparity = cv.CreateMat(limr.rows, limg.cols, cv.CV_16SC1)
                cv.FindStereoCorrespondenceBM(limr, rimr, tiny_disparity, bm)
                if tiny_disparity[7, x] < 0:
                    return
                corners3d.append(scm.projectPixelTo3d((x, y), tiny_disparity[7, x] / 16.))
                if 0:
                    cv.ShowImage("d", disparity)
            (a, b, c, d) = [numpy.array(pt) for pt in corners3d]
            def normal(s, t):
                return (t - s) / numpy.linalg.norm(t - s)
            x = PyKDL.Vector(*normal(a, b))
            y = PyKDL.Vector(*normal(a, d))
            f = PyKDL.Frame(PyKDL.Rotation(x, y, x * y), PyKDL.Vector(*a))
            msg = pm.toMsg(f)
            # print "%10f %10f %10f" % (msg.position.x, msg.position.y, msg.position.z)
            print code, msg.position.x, msg.position.y, msg.position.z
            self.broadcast(lmsg.header, code, msg)
Exemple #13
0
def setup(flipped, capture, thehandcolor):
    """Initializes camera and finds initial skin tone"""

    #creates initial window and prepares text
    color = (40, 0, 0)
    font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0)
    textsize1 = (cv.GetSize(flipped)[0] / 2 - 150,
                 cv.GetSize(flipped)[1] / 2 - 140)
    textsize2 = (cv.GetSize(flipped)[0] / 2 - 150,
                 cv.GetSize(flipped)[1] / 2 - 110)
    point1 = (cv.GetSize(flipped)[0] / 2 - 25, cv.GetSize(flipped)[1] / 2 - 25)
    point2 = (cv.GetSize(flipped)[0] / 2 + 25, cv.GetSize(flipped)[1] / 2 + 25)

    #until Enter is pressed
    while (cv.WaitKey(10) != 10):

        #captures live video, and draws sub-box and text
        frame = cv.QueryFrame(capture)
        cv.Copy(frame, flipped)
        cv.Flip(flipped, flipped, 1)
        cv.Rectangle(flipped, point1, point2, color, 2)
        cv.PutText(flipped, "Put your hand in the box ", textsize1, font,
                   color)
        cv.PutText(flipped, "and press enter", textsize2, font, color)
        cv.ShowImage("w2", flipped)

    #Creates sub-image inside box, and returns average color in box
    sub = cv.GetSubRect(flipped, (cv.GetSize(flipped)[0] / 2 - 25,
                                  cv.GetSize(flipped)[1] / 2 - 25, 50, 50))
    cv.Set(thehandcolor, cv.Avg(sub))
    return cv.Avg(sub)
Exemple #14
0
def getData():

  for i in range (0 , classes):
    for j in range (0, train_samples):
      if j < 10 :
        fichero = "OCR/"+str(i) + "/"+str(i)+"0"+str(j)+".pbm"
      else:
        fichero = "OCR/"+str(i) + "/"+str(i)+str(j)+".pbm"
      src_image = cv.LoadImage(fichero,0)
      prs_image = preprocessing(src_image, size, size)
  
         
      
      row = cv.GetRow(trainClasses, i*train_samples + j)
      cv.Set(row, cv.RealScalar(i))
      row = cv.GetRow(trainData,   i*train_samples + j)

      img = cv.CreateImage( ( size, size ), cv.IPL_DEPTH_32F, 1) 
      

      cv.ConvertScale(prs_image,img,0.0039215, 0)


      data = cv.GetSubRect(img,  (0,0, size,size))
      row1 = cv.Reshape( data, 0, 1 )
     
      cv.Copy(row1, row)
Exemple #15
0
def classify(img):
  nearest=cv.CreateMat(1,K,cv.CV_32FC1)
  prs_image = preprocessing(img, size, size)
  
  img32  = cv.CreateImage( ( size, size ), cv.IPL_DEPTH_32F, 1 )
  cv.ConvertScale(prs_image, img32, 0.0039215, 0)
  data   = cv.GetSubRect(img32,  (0,0, size,size))
  row1   = cv.Reshape( data, 0, 1 )
  result = knn.find_nearest(nearest,row1,K,0,0,0)	
  result = 0
  
  indices = cv.Mat(N, K, cv.CV_32S)
  dists = cv.Mat(N, K, cv.CV_32F)

  flann.knnSearch(m_object, indices, dists, K, cv.SearchParams(250))
    
  
  accuracy=0
  for i in range (0,K):
  #  print nearest
   # if  nearest.data.fl[i] == result:
    accuracy+=1

    pre= 100*(float(accuracy)/float(K))
   
  #print "r: ",result," pre ",pre," accu ",accuracy," K ",K
  return result
    def crop_face(self, image, coordinates, image_filename):
        """ Crops all faces from a list of images and coordinates
        Returns a list with all faces"""

        logging.debug(
            'Start method "crop_face" for file %s (face-detector.py)' %
            image_filename)
        cropped_faces = []  # list with all cropped faces (defined with ROI)

        for i in range(len(coordinates)):
            rectangle = coordinates[i][0]
            cropped_faces.append(cv.GetSubRect(
                image, rectangle))  # save faces (with ROI) in new list

            #check face for max image size
            if cropped_faces[i].height > parameter.max_facesize[
                    0] or cropped_faces[i].width > parameter.max_facesize[
                        1]:  #start resize
                (cropped_faces[i],
                 downsize_factor) = tools.downsize_image(cropped_faces[i])
                logging.debug(
                    'Face in image %s has been downsized with factor %d (face-detector.py)'
                    % (image_filename, downsize_factor))

        logging.debug('%d faces successfully cropped (face-detector.py)',
                      len(cropped_faces))
        return cropped_faces  # faces are defined with ROI
    def __init__(self, frame, rect, time_makes_difference=False):
        self.rect = rect
        self.time_makes_difference = time_makes_difference
        self.face_photo_valid = False
        self.face_size = [rect[2], rect[3]]
        self.personID = -1
        self.white_level = 6
        try:
            sub_image = cv.GetSubRect(frame, rect)
        except:
            return None
        self.frame_copy = cv.CreateImage((rect[2], rect[3]), cv.IPL_DEPTH_8U,
                                         frame.nChannels)

        if frame.origin == cv.IPL_ORIGIN_TL:
            cv.Copy(sub_image, self.frame_copy)
        else:
            cv.Flip(sub_image, self.frame_copy, 0)
        self.find_eyes()

        if self.is_a_valid_face_photo():
            self.find_wrinkles()
            self.find_avarage_colors()
            self.find_gender_age_emotions()
            #self.count_face_vector()
            self.create_face_vector()
def preprocessImage(inputPath, outputPath):
    image = cv.LoadImage(inputPath, 0)

    #Find the most likely face
    (x, y, w, h), n = mostLikelyHaar(image, haarFace)
    croppedImage = cv.CreateImage((w, h), image.depth, image.nChannels)
    scaledImage = cv.CreateImage((256, 256), image.depth, image.nChannels)
    src_region = cv.GetSubRect(image, (x, y, w, h))
    cv.Copy(src_region, croppedImage)
    cv.Resize(croppedImage, scaledImage)
    image = scaledImage

    #Find each ficudial point
    leftEye = ImageObject(image, haarLeftEye,
                          inPercentRect(image, 0, 0, .6, .5))
    leftEyePoints = leftEye.getPoints([(.2, .5), (.8, .5)])
    rightEye = ImageObject(image, haarRightEye,
                           inPercentRect(image, .4, 0, 1, .5))
    rightEyePoints = rightEye.getPoints([(.2, .5), (.8, .5)])
    mouth = ImageObject(image, haarMouth, inPercentRect(image, 0, .6, 1, 1))
    mouthPoints = mouth.getPoints([(0, .3), (.5, .3), (1, .3)])
    nose = ImageObject(image, haarNose)
    nosePoints = nose.getPoints([(.2, .5), (.5, .5), (.8, .5)])

    #rotate each set of points by the tilt of the face
    tiltAngle = math.atan2(rightEyePoints[0][1] - leftEyePoints[0][1],
                           rightEyePoints[0][0] - leftEyePoints[0][0])
    leftEyePoint = tiltPoints(tiltAngle, leftEyePoints)
    rightEyePoints = tiltPoints(tiltAngle, rightEyePoints)
    mouthPoints = tiltPoints(tiltAngle, mouthPoints)
    nosePoints = tiltPoints(tiltAngle, nosePoints)

    image = rotateImage(image, tiltAngle, (w / 2, h / 2))

    leftEye = ImageObject(image, haarLeftEye,
                          inPercentRect(image, 0, 0, .6, .5))
    rightEye = ImageObject(image, haarRightEye,
                           inPercentRect(image, .4, 0, 1, .5))
    mouth = ImageObject(image, haarMouth, inPercentRect(image, 0, .6, 1, 1))
    nose = ImageObject(image, haarNose)

    rotation = math.log(leftEye.w) - math.log(rightEye.w)
    print rotation

    info = {
        'image': outputPath,
        'lbp-left-eye': calcLBP(image, leftEye),
        'left-eye': leftEye.getTuple(),
        'lbp-right-eye': calcLBP(image, rightEye),
        'right-eye': rightEye.getTuple(),
        'lbp-mouth': calcLBP(image, mouth),
        'mouth': mouth.getTuple(),
        'tilt': tiltAngle,
        'rotation': rotation
    }

    #save image of the cropped face
    cv.SaveImage(outputPath, image)

    return info
Exemple #19
0
def crop(im, size, pos=(0, 0)):
    """
	This function is very similar to :func:`sample()` in that it returns a specified subsection of the image.  The main difference here is that if the region is too big to fit, the returned image is made smaller.  There is no size default here and pos defaults to the top-left corner of the image.
	
	**Parameters:**
		* im (cvArr) - The source image.
		* size (tuple) - The cropped image size (w, h).
		* pos (tuple) - The position of the top-left corner of the cropped image.
	
	**Returns:**
		The cropped image.
	
	.. seealso::
		:func:`sample()`
	"""
    warn = False
    if pos[0] + size[0] > im.width:
        size = (im.width - 1 - pos[0], size[1])
        warn = True
    if pos[1] + size[1] > im.height:
        size = (size[0], im.height - 1 - pos[1])
        warn = True
    if warn:
        warnings.warn(
            "Cropped region went off the edge of the image.  The cropped size has been reduced to %dx%d."
            % (size[0], size[1]),
            stacklevel=2)

    rect = (pos[0], pos[1], size[0], size[1])
    cropped = create(im, size=size)
    dst = cv.GetSubRect(im, rect)
    cv.Resize(dst, cropped)
    return cropped
 def cropFrame(self, frame, lastMarkerLocationX, lastMarkerLocationY):
     if (not self.trackerIsInitialized):
         self.markerTracker.allocateSpaceGivenFirstFrame(self.originalImage)
         self.reducedImage = cv.CreateImage(
             (self.windowWidth, self.windowHeight), frame.depth, 3)
     xCornerPos = lastMarkerLocationX - self.windowWidth / 2
     yCornerPos = lastMarkerLocationY - self.windowHeight / 2
     # Ensure that extracted window is inside the original image.
     if (xCornerPos < 1):
         xCornerPos = 1
     if (yCornerPos < 1):
         yCornerPos = 1
     if (xCornerPos > frame.width - self.windowWidth):
         xCornerPos = frame.width - self.windowWidth
     if (yCornerPos > frame.height - self.windowHeight):
         yCornerPos = frame.height - self.windowHeight
     try:
         self.subImagePosition = (xCornerPos, yCornerPos, self.windowWidth,
                                  self.windowHeight)
         self.reducedImage = cv.GetSubRect(frame, self.subImagePosition)
         cv.ConvertScale(self.reducedImage, self.originalImage)
         cv.CvtColor(self.originalImage, self.frameGray, cv.CV_RGB2GRAY)
     except:
         print("frame: ", frame.depth)
         print("originalImage: ", self.originalImage.height,
               self.originalImage.width, self.originalImage)
         print("frameGray: ", self.frameGray.height, self.frameGray.width,
               self.frameGray.depth)
         print "Unexpected error:", sys.exc_info()[0]
         #quit(0)
         pass
Exemple #21
0
    def _selectTrackingPoints(self,frame):
        '''
        This uses the OpenCV get good features to track to initialize a set of tracking points_b.
        '''
        quality = 0.01
        min_distance = 15
        
        w,h = self.tile_size
        tw = w//self.grid
        th = h//self.grid

        for i in range(self.grid):
            for j in range(self.grid):
                ul = pv.Point(i*tw,j*th)
                rect = pv.Rect(i*tw,j*th,tw,th)
                count = 0
                for pt in self.tracks:
                    if rect.containsPoint(pt):
                        count += 1
                    
                if count < self.min_points:
                    gray = cv.CreateImage ((tw,th), 8, 1)
                    
                    faceim = cv.GetSubRect(frame, rect.asOpenCV())
                    cv.Resize(faceim,gray)

                    eig = cv.CreateImage ((tw,th), 32, 1)
                    temp = cv.CreateImage ((tw,th), 32, 1)
                
                    # search the good points_b
                    points_b = cv.GoodFeaturesToTrack (gray, eig, temp, 2*self.min_points, quality, min_distance, None, 3, 0, 0.04)
                    
                    for pt in points_b:
                        self.tracks.append(ul+pv.Point(pt))
Exemple #22
0
def DetectRedEyes(image, faceCascade, eyeCascade):
    min_size = (20, 20)
    image_scale = 2
    haar_scale = 1.2
    min_neighbors = 2
    haar_flags = 0

    # Allocate the temporary images
    gray = cv.CreateImage((image.width, image.height), 8, 1)
    smallImage = cv.CreateImage((cv.Round(
        image.width / image_scale), cv.Round(image.height / image_scale)), 8,
                                1)

    # Convert color input image to grayscale
    cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

    # Scale input image for faster processing
    cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

    # Equalize the histogram
    cv.EqualizeHist(smallImage, smallImage)

    # Detect the faces
    faces = cv.HaarDetectObjects(smallImage, faceCascade,
                                 cv.CreateMemStorage(0), haar_scale,
                                 min_neighbors, haar_flags, min_size)

    # If faces are found
    if faces:
        print "face detected"
        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
            face_region = cv.GetSubRect(image,
                                        (x, int(y + (h / 4)), w, int(h / 2)))

        cv.SetImageROI(
            image,
            (pt1[0], pt1[1], pt2[0] - pt1[0], int((pt2[1] - pt1[1]) * 0.7)))
        eyes = cv.HaarDetectObjects(image, eyeCascade, cv.CreateMemStorage(0),
                                    haar_scale, min_neighbors, haar_flags,
                                    (15, 15))

        # if eyes:
        # 	# For each eye found
        # 	for eye in eyes:
        # 		# Draw a rectangle around the eye
        # 		cv.Rectangle(image,
        # 		(eye[0][0],
        # 		eye[0][1]),
        # 		(eye[0][0] + eye[0][2],
        # 		eye[0][1] + eye[0][3]),
        # 		cv.RGB(255, 0, 0), 1, 8, 0)

    cv.ResetImageROI(image)
    return image
Exemple #23
0
def sourires(src):
	res = []
	img = cv.GetSubRect(src, (src.width*1/7, src.height*2/3, src.width*5/7, src.height/3)) 
	cpt = 0
	for s in all_s :
		temp = cv.HaarDetectObjects(img, s, cv.CreateMemStorage())
		res.append(len(temp))
	return res
Exemple #24
0
def crop(src, sky):
    x,y  = sky.center
    left = x - sky.radius
    top = y - sky.radius
    new_width = 2 * sky.radius
    new_height = 2 * sky.radius
    cropped = cv.GetSubRect(src, (left, top, new_width, new_height) )
    return cropped
Exemple #25
0
    def crop(self, left, top, right, bottom):
        new_width = right - left
        new_height = bottom - top
        cropped = cv.CreateImage((new_width, new_height), 8, 3)
        src_region = cv.GetSubRect(self.image, (left, top, new_width, new_height) )
        cv.Copy(src_region, cropped)

        self.image = cropped
def sourires(img):
    res = dict()
    img = cv.GetSubRect(img, (img.width * 1 / 7, img.height * 2 / 3,
                              img.width * 5 / 7, img.height / 3))
    cpt = 0
    for s, smiles in zip(all_s, smile_list):
        res[smiles] = len(cv.HaarDetectObjects(img, s, cv.CreateMemStorage()))
    return res
Exemple #27
0
def getSegment(channel, image, rect, bgcolor=96):
    seg = cap.getSubImage(channel, rect)
    original = cv.GetSubRect(image, rect)
    for x in xrange(original.width):
        for y in xrange(original.height):
            if original[y, x] != 0 and seg[y, x] != 255:
                seg[y, x] = bgcolor
    return seg
Exemple #28
0
    def run(self):

        self.objects[0] = list()

        while True:
            frame = cv.QueryFrame(self.capture)
            if frame == 0:
                break
            self.frameNumber = self.frameNumber + 1

            if self.frameNumber % 10 == 0:
                self.save()

            #copy last frame objects
            self.objects[self.frameNumber] = deepcopy(
                self.objects[self.frameNumber - 1][:])

            while True:
                frameSelection = cv.CloneImage(frame)
                for object in self.objects[self.frameNumber]:
                    x, y, w, h = object.getRectangle()
                    cv.Rectangle(frameSelection, (x, y), (x + w, y + h),
                                 (255, 255, 255))

    # If mouse is pressed, highlight the current selected rectangle
    # and recompute the histogram
                if self.drag_start and is_rect_nonzero(self.selection):

                    sub = cv.GetSubRect(frameSelection, self.selection)
                    save = cv.CloneMat(sub)
                    cv.ConvertScale(frameSelection, frameSelection, 0.5)
                    cv.Copy(save, sub)
                    x, y, w, h = self.selection
                    cv.Rectangle(frameSelection, (x, y), (x + w, y + h),
                                 (255, 255, 255))

                cv.ShowImage("Output", frameSelection)
                key = cv.WaitKey(1000 / 25)
                if key == ord("n"):
                    break
                if key == ord("w"):
                    self.save()
                if key == ord("s"):
                    self.startFrame = self.frameNumber
                    print "Set Starting frame: " + self.frameNumber
                if key == ord("c"):
                    self.objects[self.frameNumber].extend(
                        self.objects[self.frameNumber - 1][:])
                if key == ord("d"):
                    self.objects[self.frameNumber] = list()
                elif key == 65364:
                    moveObjects(self.objects[self.frameNumber], (0, 1))
                elif key == 65362:
                    moveObjects(self.objects[self.frameNumber], (0, -1))
                elif key == 65363:
                    moveObjects(self.objects[self.frameNumber], (1, 0))
                elif key == 65361:
                    moveObjects(self.objects[self.frameNumber], (-1, 0))
def extractFace(image_path):
    """
    If a face is detected in an image, the face is cropped and saved as a new image, and a rectangle is drawn
    over the area where the face was detected and that is saved as its own image.
    """
    # Handle IO errors, which suck
    try:
        img = cv.LoadImage(image_path)
        io_err = False
    except IOError as e:
        print e
        io_err = True
    
    if not io_err:
    
        # Create a grayscale version of the image
        img_gray = cv.CreateImage(cv.GetSize(img), 8, 1)
        cv.CvtColor(img, img_gray, cv.CV_BGR2GRAY)

        # Equalize image histogram
        cv.EqualizeHist(img_gray, img_gray)

        # Show processed image
        cv.ShowImage('Processed', img_gray)

        # Create storage for detection
        storage = cv.CreateMemStorage(0)
    
        # Train face detector using the Haar cascade file
        cascade = cv.Load('data/haarcascade_frontalface_alt.xml')
        faces = cv.HaarDetectObjects(img_gray, cascade, storage, 1.2, 2, cv.CV_HAAR_DO_CANNY_PRUNING)
    
        # Extract the region of interest detected by the classifier
        if faces:
            date = re.split("[./]", image_path)[1]
            face_count = 0
            for i in faces:
                x = i[0][0]
                y = i[0][1]
                w = i[0][2]
                h = i[0][3]
                
                # Highlight face in original
                cv.Rectangle(img, (x, y), (x+w, y+h), cv.RGB(0, 255, 0), 2)
                
                # Extraqct face for skin tone
                crop = cv.CreateImage((w, h), 8, 3)
                roi = cv.GetSubRect(img, i[0])
                cv.Copy(roi, crop)
                
                # Save images
                highlight_path = "faces/" + date + '_' + str(face_count) + '.jpg'
                crop_path = "faces/" + date + '_' + str(face_count) + '_crop.jpg'
                cv.SaveImage(highlight_path, img)
                cv.SaveImage(crop_path, crop)
                face_count += 1
        else:
            print 'No face detected in: ' + image_path
Exemple #30
0
    def redraw_stereo(self, drawable):
        width, height = cv.GetSize(drawable.lscrib)

        display = cv.CreateMat(max(480, height), 2 * width + 100, cv.CV_8UC3)
        cv.Zero(display)
        cv.Copy(drawable.lscrib, cv.GetSubRect(display, (0, 0, width, height)))
        cv.Copy(drawable.rscrib,
                cv.GetSubRect(display, (width, 0, width, height)))
        cv.Set(cv.GetSubRect(display, (2 * width, 0, 100, height)),
               (255, 255, 255))

        self.buttons(display)

        if not self.c.calibrated:
            if drawable.params:
                for i, (label, lo, hi, progress) in enumerate(drawable.params):
                    (w, _), _ = cv.GetTextSize(label, self.font)
                    cv.PutText(display, label,
                               (2 * width + (100 - w) / 2, self.y(i)),
                               self.font, (0, 0, 0))
                    color = (0, 255, 0)
                    if progress < 1.0:
                        color = (0, int(progress * 255.), 255)
                    cv.Line(display,
                            (int(2 * width + lo * 100), self.y(i) + 20),
                            (int(2 * width + hi * 100), self.y(i) + 20), color,
                            4)

        else:
            cv.PutText(display, "epi.", (2 * width, self.y(0)), self.font,
                       (0, 0, 0))
            if drawable.epierror == -1:
                msg = "?"
            else:
                msg = "%.2f" % drawable.epierror
            cv.PutText(display, msg, (2 * width, self.y(1)), self.font,
                       (0, 0, 0))
            # TODO dim is never set anywhere. Supposed to be observed chessboard size?
            if drawable.dim != -1:
                cv.PutText(display, "dim", (2 * width, self.y(2)), self.font,
                           (0, 0, 0))
                cv.PutText(display, "%.3f" % drawable.dim,
                           (2 * width, self.y(3)), self.font, (0, 0, 0))

        self.show(display)