Exemple #1
0
 def __init__(self, corner_a, corner_b, corner_c, corner_d):
     rng = cv.RNG()
     self.midx = rect_midpointx(corner_a, corner_b, corner_c, corner_d)
     self.midy = rect_midpointy(corner_a, corner_b, corner_c, corner_d)
     self.corner1 = corner_a
     self.corner2 = corner_b
     self.corner3 = corner_c
     self.corner4 = corner_d
     # locx and locy are relative locations of corners when compared to other corners of the same rectangle
     self.corner1_locx = self.corner1[0] - self.corner2[0]
     self.corner1_locy = self.corner1[1] - self.corner2[1]
     self.corner2_locx = self.corner2[0] - self.corner1[0]
     self.corner2_locy = self.corner2[1] - self.corner1[1]
     self.corner3_locx = self.corner3[0] - self.corner1[0]
     self.corner3_locy = self.corner3[1] - self.corner1[1]
     self.corner4_locx = self.corner4[0] - self.corner1[0]
     self.corner4_locy = self.corner4[1] - self.corner1[1]
     # angle is found according to short side
     if line_distance(corner_a, corner_c) < line_distance(corner_a, corner_b):
         self.angle = -angle_between_lines(line_slope(corner_a, corner_c), 0)
     else:
         self.angle = -angle_between_lines(line_slope(corner_a, corner_b), 0)
     self.id = 0  # id identifies which pizza your looking at
     self.last_seen = 2  # how recently you have seen this pizza
     self.seencount = 1  # how many times you have seen this pizza (if you see it enough it becomes confirmed)
     r = int(cv.RandReal(rng) * 255)
     g = int(cv.RandReal(rng) * 255)
     b = int(cv.RandReal(rng) * 255)
     self.debug_color = cv.RGB(r, g, b)
     self.object = random.choice(["A", "B", "C", "D"])
Exemple #2
0
def addGaussianNoise(image_path, save_path):
    img = cv.LoadImage(image_path)
    noise = cv.CreateImage(cv.GetSize(img), img.depth, img.nChannels)
    cv.SetZero(noise)
    rng = cv.RNG(-1)
    cv.RandArr(rng, noise, cv.CV_RAND_NORMAL, cv.ScalarAll(0),
               cv.ScalarAll(25))
    cv.Add(img, noise, img)
    tempName = os.path.splitext(
        os.path.basename(image_path))[0] + "_noised.jpg"
    save_image = os.path.join(save_path, tempName)
    cv.SaveImage(save_image, img)
Exemple #3
0
    def init(self):

        # Thresholds
        self.minsize = 50
        self.maxsize = 300

        # List we store found buoys in
        self.new = []

        if self.debug:
            # windows
            #cv.NamedWindow("Buoy" + self.camera_name)

            # random number generator used for choosing debug colors
            self.rng = cv.RNG()
Exemple #4
0
    def init(self):
        # Total Number of Buoys Found
        self.buoy_count = 0

        # Average disparity across cameras
        self.avg_disparity = 0

        # Buoy Classes
        self.newLeft = []
        self.newRight = []
        self.candidates = []
        self.confirmed = []
        self.lost = []

        if self.debug:
            # random number generator used for choosing debug colors
            self.rng = cv.RNG()
Exemple #5
0
def noisy(image, noise_typ, filename):

    if noise_typ == "gauss":
        row, col = image.shape
        mean = 0
        deviation = 30
        #var = 0.1
        #sigma = var**0.5
        gauss = np.random.normal(mean, deviation, (row, col))
        gauss = gauss.reshape(row, col)
        noisy = image + gauss
        misc.imsave(filename, noisy)

    elif noise_typ == "s&p":
        row, col = image.shape
        s_vs_p = 0.5
        amount = 0.01
        out = image
        # Salt mode
        num_salt = np.ceil(amount * image.size * s_vs_p)
        coords = [
            np.random.randint(0, i - 1, int(num_salt)) for i in image.shape
        ]
        out[coords] = 255

        # Pepper mode
        num_pepper = np.ceil(amount * image.size * (1. - s_vs_p))
        coords = [
            np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape
        ]
        out[coords] = 0
        misc.imsave(filename, out)

    elif noise_typ == "speckle":
        mult_noise = cv.CreateImage((image.width, image.height),
                                    cv.IPL_DEPTH_32F, 1)
        cv.RandArr(cv.RNG(6), mult_noise, cv.CV_RAND_NORMAL, 1, 0.1)
        cv.Mul(image, mult_noise, image)
        cv.SaveImage(filename, image)

    elif noise_typ == "blur":
        blur = ndimage.gaussian_filter(image, sigma=3)
        misc.imsave(filename, blur)
Exemple #6
0
    def init(self):

        # Total Number of Buoys Found
        self.buoy_count = 0

        # Thresholds
        self.minsize = 20
        self.maxsize = 40
        # Buoy Classes
        self.new = []
        self.candidates = []
        self.confirmed = []
        self.lost = []
        #self.debug = True

        if self.debug:
            # windows
            #    cv.NamedWindow("BuoyTest")

            # random number generator used for choosing debug colors
            self.rng = cv.RNG()
   Pressing ESC will stop the program.
"""
import urllib2
import cv
from math import cos, sin, sqrt
import sys

if __name__ == "__main__":
    A = [[1, 1], [0, 1]]

    img = cv.CreateImage((500, 500), 8, 3)
    kalman = cv.CreateKalman(2, 1, 0)
    state = cv.CreateMat(2, 1, cv.CV_32FC1)  # (phi, delta_phi)
    process_noise = cv.CreateMat(2, 1, cv.CV_32FC1)
    measurement = cv.CreateMat(1, 1, cv.CV_32FC1)
    rng = cv.RNG(-1)
    code = -1L

    cv.Zero(measurement)
    cv.NamedWindow("Kalman", 1)

    while True:
        cv.RandArr(rng, state, cv.CV_RAND_NORMAL, cv.RealScalar(0),
                   cv.RealScalar(0.1))

        kalman.transition_matrix[0, 0] = 1
        kalman.transition_matrix[0, 1] = 1
        kalman.transition_matrix[1, 0] = 0
        kalman.transition_matrix[1, 1] = 1

        cv.SetIdentity(kalman.measurement_matrix, cv.RealScalar(1))
import cv

im = cv.LoadImage('melon.jpg', cv.CV_LOAD_IMAGE_GRAYSCALE)
mult_noise = cv.CreateImage((im.width, im.height), cv.IPL_DEPTH_32F, 1)

cv.RandArr(cv.RNG(6), mult_noise, cv.CV_RAND_NORMAL, 1, 0.1)

cv.Mul(im, mult_noise, im)

cv.ShowImage("tree with speckle noise", im)
cv.WaitKey(0)