Exemple #1
0
def shift_acc_center_of_mass(img):
    img = cv2.bitwise_not(img)

    # centralize according to center of mass
    shiftx, shifty = get_best_shift(img)
    shifted = shift(img, shiftx, shifty)
    img = shifted

    img = cv2.bitwise_not(img)
    return img
Exemple #2
0
def image_processing(imageA, img0, lang, csv_file):
    count = 0
    img = imageA.copy()
    # prepare image quality for OCR
    img = cv2.bitwise_not(img)
    _, img_recog = cv2.threshold(img, 210, 255, cv2.THRESH_BINARY)
    _, img = cv2.threshold(img, 224, 255, cv2.THRESH_BINARY)

    #find text areas
    imgBi = cv2.bitwise_not(imageA)
    _, binary2 = cv2.threshold(imgBi, 0, 255, cv2.THRESH_BINARY)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 20))
    eroded = cv2.erode(binary2, kernel, iterations=1)
    erodedBi = cv2.bitwise_not(eroded)
    contours2, hierarchy2 = cv2.findContours(erodedBi, cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)

    # find head area for OCR text with color
    headArea = img_recog[104:204, 319:1493]
    erodedHead = cv2.erode(headArea, kernel, iterations=1)
    erodedHead = cv2.bitwise_not(erodedHead)
    contours, hierarchy = cv2.findContours(erodedHead, cv2.RETR_EXTERNAL,
                                           cv2.CHAIN_APPROX_SIMPLE)

    for i in range(len(contours)):
        x, y, w, h = cv2.boundingRect(contours[i])
        if w < 1000:
            count += 1
            cv2.rectangle(img0, (x + 319, y + 104), (x + 319 + w, y + 104 + h),
                          (0, 255, 0), 2)
            crop_img = headArea[y:y + h, x:x + w]
            cv2.imwrite('ref.png', crop_img)
            text = tesserocr.image_to_text(Image.open('ref.png'), lang)
            text = text.replace(" ", "")
            text = text.replace("\n", " ")
            csv_file.write('{}:,{},{},{},{},{}\n'.format(
                count, x, y, w, h, text.encode('utf-8')))

    for j in range(len(contours2)):
        cnt2 = contours2[j]
        x2, y2, w2, h2 = cv2.boundingRect(cnt2)
        if x2 > 120 and y2 > 200 and 2 < w2 and 2 < h2 < 450:
            count += 1
            cv2.rectangle(img0, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 0), 2)
            crop_img = img_recog[y2:y2 + h2, x2:x2 + w2]
            cv2.imwrite('ref.png', crop_img)
            text = tesserocr.image_to_text(Image.open('ref.png'), lang)
            text = text.replace(" ", "")
            text = text.replace("\n", " ")
            csv_file.write('{}:,{},{},{},{},{}\n'.format(
                count, x2, y2, w2, h2, text.encode('utf-8')))
        else:
            pass
Exemple #3
0
def method2():
    while c.isOpened():
        rd, image = c.read()

        if rd:
            # ---------> 前處理 <----------
            m1 = image[:, :, 2]  # 取 紅色通道

            # ---------> 二值化 <----------
            th, m2 = cv2.threshold(m1, 50, 255, cv2.THRESH_BINARY)
            m3 = cv2.bitwise_not(m2)

            # ---------> 最小方框點 <----------
            x, y, w, h = cv2.boundingRect(m3)

            # ---------> 畫方框在原始圖片上 <----------
            cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 255), 3)

            cv2.imshow("image", image)
            cv2.imshow("m1", m1)
            cv2.imshow("m2", m2)
            cv2.imshow("m3", m3)
        else:
            break

        if cv2.waitKey(10) != -1:
            break
Exemple #4
0
def method6():
    while c.isOpened():
        rd, image = c.read()

        if rd:
            # ---------> 前處理 <----------
            m1 = image[:, :, 0]  # 取 藍色通道
            m2 = image[:, :, 2]  # 取 紅色通道
            m3 = cv2.subtract(m1, m2)  # 紅色通道 - 藍色通道

            # ---------> 二值化 <----------
            th, m3 = cv2.threshold(m3, 50, 255, cv2.THRESH_BINARY)
            m4 = cv2.bitwise_not(m3)

            m5 = cv2.Canny(m4, 100, 30)

            # ---------> 最小方框點 <----------
            x, y, w, h = cv2.boundingRect(m5)

            # ---------> 畫方框在原始圖片上 <----------
            cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 255), 3)

            cv2.imshow("image", image)
            cv2.imshow("m1", m1)
            cv2.imshow("m2", m2)
            cv2.imshow("m3", m3)
            cv2.imshow("m4", m4)
            cv2.imshow("m5", m5)
        else:
            break

        if cv2.waitKey(10) != -1:
            break
def extract(image):
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    low = np.array([0, 100, 250])
    high = np.array([179, 255, 255])
    mask_fore = cv2.inRange(hsv, low, high)
    mask_back = cv2.bitwise_not(mask_fore)

    kernel = np.ones((11, 11), np.float32) / 121
    fltr1_f_dil = cv2.dilate(mask_fore, kernel, iterations=1)
    fltr1_f_bor = cv2.bitwise_and(mask_back, mask_back, mask=fltr1_f_dil)

    contours, hierarchy = cv2.findContours(fltr1_f_bor, cv2.RETR_EXTERNAL,
                                           cv2.CHAIN_APPROX_NONE)
    contours = sorted(contours, key=lambda ctr: cv2.boundingRect(ctr)[0])
    i = 0

    save_path = os.path.join(os.getcwd(), IMG_DES)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    for cnt in contours:
        x, y, w, h = cv2.boundingRect(cnt)
        if w > 50 and h > 50:
            p = os.path.join(save_path, "{}.png".format(str(i)))
            cv2.imwrite(p, pad_image(fltr1_f_bor[y:y + h, x:x + w]))
            i = i + 1
Exemple #6
0
def identify_countors(image):
    stations = []
    image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image_invert = cv2.bitwise_not(image_gray)
    contours, _ = cv2.findContours(image_invert, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_NONE)

    for cnt in contours:
        approx = cv2.approxPolyDP(cnt, 0.02 * cv2.arcLength(cnt, True), True)
        M = cv2.moments(cnt)
        cx = int(M["m10"] / M["m00"])
        cy = int(M["m01"] / M["m00"])
        x, y, w, h = cv2.boundingRect(cnt)

        # detect if the square is rotationed
        # TODO: detect in some other way
        tilted = cnt.ravel()[0] == cx

        station = {
            "type": get_type_by_edges(len(approx), tilted),
            "pos": (x, y),
            "centroid": (cx, cy),
            "size": (w, h),
            "contour": cnt
        }
        stations.append(station)

    return stations
Exemple #7
0
def rm_otsu_sunshade(img, roi, config):
    shadow = get_shadow(img, roi)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # get threshold for shadow region
    # print('thr_in_shadow')
    thr_in_shadow = masked_otsu_threshold(img_gray, shadow)
    # get road markings in shadow
    _, rm_in_shadow = cv2.threshold(img_gray, thr_in_shadow, 255,
                                    cv2.THRESH_BINARY)
    # kernel_erode = np.ones((7,7), np.uint8)
    # shadow_eroded = cv2.erode(roi_shadow, kernel_erode)
    rm_in_shadow = cv2.bitwise_and(rm_in_shadow, rm_in_shadow, mask=shadow)
    # get threshold for sunlight region
    shadow_inv = cv2.bitwise_not(shadow)
    shadow_inv = cv2.bitwise_and(shadow_inv, shadow_inv, mask=roi)
    thr_out_shadow = masked_otsu_threshold(img_gray, shadow_inv)
    # get road markings not in shadow
    _, rm_out_shadow = cv2.threshold(img_gray, int(
        (thr_out_shadow * 1.5) % 255), 255, cv2.THRESH_BINARY)
    # rm_out_shadow = cv2.bitwise_and(rm_out_shadow, rm_out_shadow, mask=shadow_inv)
    # combine markings in shadow and not in shadow
    rm = cv2.bitwise_or(rm_in_shadow, rm_out_shadow)
    rm = cv2.bitwise_and(rm, rm, mask=roi)

    return rm
Exemple #8
0
def denoising(im, original, ime_firme):
    morph = im.copy()

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
    morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel)
    morph = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))

    # split the gradient image into channels
    image_channels = np.split(np.asarray(morph), 3, axis=2)

    channel_height, channel_width, _ = image_channels[0].shape

    # apply Otsu threshold to each channel
    for i in range(0, 3):
        _, image_channels[i] = cv2.threshold(
            image_channels[i], 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY)
        image_channels[i] = np.reshape(image_channels[i],
                                       newshape=(channel_height, channel_width,
                                                 1))

    # merge the channels
    image_channels = np.concatenate(
        (image_channels[0], image_channels[1], image_channels[2]), axis=2)

    gray = cv2.cvtColor(image_channels, cv2.COLOR_BGR2GRAY)

    gray = cv2.bitwise_not(gray)
    bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, \
                                cv2.THRESH_BINARY, 15, -2)

    text = dilation(bw, original, ime_firme)
    return text
Exemple #9
0
 def addTwoImgs(self, img1_RGBA, face_param):
     #将贴纸贴到图片上
     self.img = cv2.imread(self.path)
     self.img = cv2.resize(self.img,
                           (int(face_param[2] / 1), int(face_param[2] / 1)),
                           interpolation=cv2.INTER_CUBIC)
     try:
         self.rows, self.cols = self.img.shape[:2]
     except:
         NoteLabel.config(text='Fail in loading sticker!')
     self.getStickerPosition(face_param)
     if self.x1 >= 0 and self.x2 <= img1_RGBA.shape[
             1] and self.y1 >= 0 and self.y2 <= img1_RGBA.shape[0]:
         #制作掩膜
         roi = img1_RGBA[self.y1:self.y2, self.x1:self.x2]
         sticker_gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY)
         ret, mask = cv2.threshold(sticker_gray, 10, 255, cv2.THRESH_BINARY)
         del ret  #没什么意义,不想出现黄色报错而已
         mask_inv = cv2.bitwise_not(mask)
         img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
         self.img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGBA)
         dst = cv2.add(img1_bg, self.img)
         img1_RGBA[self.y1:self.y2, self.x1:self.x2] = dst
         return True, img1_RGBA
     else:
         NoteLabel.config(text="No enough space for stickers!")
         return False, None
Exemple #10
0
def logic_demo(m1, m2):
    dst1 = cv.bitwise_and(m1, m2)
    dst2 = cv.bitwise_or(m1, m2)
    dst3 = cv.bitwise_not(m1)
    cv.imshow("and", dst1)
    cv.imshow("or", dst2)
    cv.imshow("not", dst3)
def input_data_74k_digits():
    train_imgs = []
    train_digits = []
    test_imgs = []
    test_digits = []
    SPLIT_PERCENT = 80  # 80% train, 20% test

    for i in range(10):
        pics_filenames = glob.glob('digits_model/training/char74k_digits/' +
                                   str(i) + '/*.png')
        max_train_inputs = int(len(pics_filenames) * (SPLIT_PERCENT / 100))
        counter = 1
        for filename in pics_filenames:
            imgsample = Image.open(filename)
            image = np.array(imgsample)
            image = cv2.bitwise_not(image)
            image = cv2.resize(image, (28, 28))
            if counter < max_train_inputs:
                train_imgs.append(image)
                train_digits.append(i)
            else:
                test_imgs.append(image)
                test_digits.append(i)
            counter += 1

    return process_input_data(np.array(train_imgs), train_digits,
                              np.array(test_imgs), test_digits)
Exemple #12
0
def imgSkeleton(original_img):
    ret, binary_img = cv2.threshold(original_img, 0, 1,
                                    cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    extracted_img = skeletonize(binary_img)
    skeleton = extracted_img.astype(np.uint8) * 255
    skeleton = cv2.bitwise_not(skeleton)
    return skeleton
Exemple #13
0
def imgReadAndConvert(imgfilename):
    original_img = cv2.imread(imgfilename)
    # inspect error object
    img_copy = original_img.copy()
    height = img_copy.shape[0]
    width = img_copy.shape[1]
    #Image resize(prevent overflow)
    if (height * width * 1000) > 2 ^ 31:
        resize = img_copy
    elif (height * width > 2 ^ 31):
        resize = cv2.resize(img_copy,
                            dsize=(0.0001, int(0.01 * height / width)),
                            interpolation=cv2.INTER_AREA)
    else:
        resize = cv2.resize(img_copy,
                            dsize=(1000, int(1000 * height / width)),
                            interpolation=cv2.INTER_AREA)
    #GaussianBlur
    blur = cv2.GaussianBlur(resize, (5, 5), 0)
    #Image graying: reduce the influence of color
    gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
    #Noises removal from outside the contours
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
    img_open = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel)
    #Covert image into binary
    bin_img = cv2.adaptiveThreshold(img_open, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
                                    cv2.THRESH_BINARY_INV, 21, 20)
    #Reverse image color
    bin_img = cv2.bitwise_not(bin_img)
    return bin_img
Exemple #14
0
def deskew(img):
    skew_img = cv2.bitwise_not(img)  # Invert image

    # grab the (x, y) coordinates of all pixel values that
    # are greater than zero, then use these coordinates to
    # compute a rotated bounding box that contains all
    # coordinates
    coords = np.column_stack(np.where(skew_img > 0))
    angle = cv2.minAreaRect(coords)[-1]

    # the `cv2.minAreaRect` function returns values in the
    # range [-90, 0); as the rectangle rotates clockwise the
    # returned angle trends to 0 -- in this special case we
    # need to add 90 degrees to the angle
    if angle < -45:
        angle = -(90 + angle)

    # otherwise, just take the inverse of the angle to make
    # it positive
    else:
        angle = -angle

    # rotate the image to deskew it
    (h, w) = img.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(img, M, (w, h),
                             flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)

    return angle, rotated
Exemple #15
0
def find_game_frame(screen):
    global game_frame

    img = np.array(screen)
    thresh = cv2.inRange(img, WINDOW_BORDER_COLOR, WINDOW_BORDER_COLOR)
    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)
    if len(contours) == 0:
        return

    window_border = max(contours, key=cv2.contourArea)
    x0, y0, w, h = cv2.boundingRect(window_border)
    window_crop = thresh[y0:y0 + h, x0:x0 + w]
    window_thresh = cv2.bitwise_not(window_crop)
    contours, _ = cv2.findContours(window_thresh, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)
    if len(contours) == 0:
        return

    game_border = max(contours, key=cv2.contourArea)
    x1, y1, w, h = cv2.boundingRect(game_border)
    if w * h < 540 * 405:
        return

    game_frame = (x0 + x1, y0 + y1, w, h)
Exemple #16
0
    def rotate_90(self, image):
        #cv2.resize(image, (800, 800))
        #cv2.imshow('dddimage', image)
        #cv2.waitKey(0)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        gray = cv2.bitwise_not(gray)
        thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
        coords = np.column_stack(np.where(thresh > 0))
        angle = cv2.minAreaRect(coords)[-1]

        if angle < -45:
            angle = -(90 + angle)
        else:
            angle = -angle
        angle = 90

        (h, w) = image.shape[:2]
        #print(h, w)
        center = (w / 2, h / 2)
        M = cv2.getRotationMatrix2D(center, angle, 1.0)
        rotated = cv2.warpAffine(image, M, (w, h))
        #cv2.resize(rotated, (800, 1000))
        #cv2.imshow('rotated', rotated)
        #cv2.waitKey(0)
        file_path_name = 'img/rotate_img.jpg'
        cv2.imwrite(file_path_name, rotated)
        return file_path_name
Exemple #17
0
    def _preprocess(self, warped_img):
        '''
        Preprocess the warped and rotated image.

        @warped_img:
            np.array, it should be the output of self._polar_warp_and_rotate().
        @return:
            (s_mask, output_img), saturation mask and image after preprocessing.
        '''
        warped_img = cv.GaussianBlur(warped_img, (3, 3), 1.5)
        hsv = cv.cvtColor(warped_img, cv.COLOR_BGR2HSV)
        warped_img = cv.cvtColor(warped_img, cv.COLOR_BGR2GRAY)
        warped_img = cv.equalizeHist(warped_img)  # Enhance contrast

        _, s, _ = cv.split(hsv)
        _, s = cv.threshold(s, 0, 255, cv.THRESH_OTSU)
        s = cv.morphologyEx(s, cv.MORPH_ERODE, np.ones((5, 5)))
        _, contours, _ = cv.findContours(s, cv.RETR_TREE,
                                         cv.CHAIN_APPROX_SIMPLE)
        contours = sorted(contours, key=lambda ctr: cv.contourArea(ctr)
                          )  # Sort to choose the largest area
        mask = cv.drawContours(np.zeros((warped_img.shape), np.uint8),
                               contours,
                               len(contours) - 1, (255, 255, 255),
                               thickness=1)
        box = cv.boundingRect(get_points(mask))  # Largest area box-bouding
        mask = cv.rectangle(mask, (box[0], box[1]),
                            (box[0] + box[2], box[1] + box[3]),
                            (255, 255, 255),
                            cv.FILLED)  # Fill the area that is to be removed
        mask = cv.bitwise_not(mask)  # Ensure tooth existing area
        return mask, warped_img
    def generateNewMap(self, map_raw, visualize=True):
        if visualize:
            cv2.imshow('Originial Image', map_raw)

        map_bw = cv2.threshold(map_raw, self._bw_thresh, 255,
                               cv2.THRESH_BINARY)[1]
        map_bw = cv2.bitwise_not(map_bw)
        if visualize:
            cv2.imshow('Image threshold black and white', map_bw)

        # try to clean up noise in the map
        kernel = np.ones((5, 5), np.uint8)
        map_bw = cv2.morphologyEx(map_bw, cv2.MORPH_CLOSE, kernel)
        map_bw = cv2.morphologyEx(map_bw, cv2.MORPH_CLOSE, kernel)
        if visualize:
            cv2.imshow('filtered image', map_bw)

        # shrink image to get desired scale
        height, width = map_bw.shape
        new_height = int(height * self._scale_px2m / self._scale)
        new_width = int(width * self._scale_px2m / self._scale)
        map_shrunk = cv2.resize(map_bw, (new_width, new_height)) / 255
        if visualize:
            cv2.imshow('resized map', map_shrunk)

        map_mat = np.array(map_shrunk)
        if visualize:
            # shut down when done
            print("Check generated map, press ESC to continue")
            k = cv2.waitKey(0)
            if k == 27:  # wait for ESC key to exit
                cv2.destroyAllWindows()

        return map_mat
Exemple #19
0
 def generate(self, text):
     plate = self.draw(text)
     plate = cv2.bitwise_not(plate)  #黑底白字
     plate = cv2.bitwise_or(plate, self.bg)  #加入背景
     plate = rotRandrom(plate, 15, (plate.shape[1], plate.shape[0]))
     plate = Add_Env(plate, self.env_path)
     plate = GaussBlur(plate, 1 + R(7))
     return plate
Exemple #20
0
 def mask_image2(self, img, contours):
     img2 = img.copy()
     contours = contours.reshape((contours.shape[0], 1, contours.shape[1]))
     mask = np.zeros(img.shape[:-1], np.uint8)
     cv.fillPoly(mask, [contours], 255, cv.LINE_AA)
     mask_inv = cv.bitwise_not(mask)
     img2[mask_inv == 0] = (255, 255, 255)
     return img2
Exemple #21
0
def extract(img, left, right):
    dim_y = len(img)
    dim_x = len(img[0])
    # cv2.imshow('', img)
    # cv2.waitKey(0)

    final_mask = np.zeros((dim_y, dim_x, 3), np.uint8)

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow('gray', gray)
    # cv2.waitKey(0)

    _, thresh = cv2.threshold(gray, 75, 255, cv2.THRESH_BINARY_INV)
    # cv2.imshow('thresh', thresh)
    # cv2.waitKey(0)

    l, r = 0, 0
    t = 0
    max_cnt = []

    print("_____________")
    while r - l < right - left:
        t += 1
        cnt = copy.deepcopy(thresh)
        # cv2.imshow('cnt', cnt)
        # cv2.waitKey(0)

        contours, hierarchy = cv2.findContours(cnt, cv2.RETR_TREE,
                                               cv2.CHAIN_APPROX_NONE)
        cv2.drawContours(cnt, contours, -1, 255, t)
        # cv2.imshow('cnt', cnt)
        # cv2.waitKey(0)

        contours, hierarchy = cv2.findContours(cnt, cv2.RETR_TREE,
                                               cv2.CHAIN_APPROX_NONE)
        max_cnt = max(contours, key=cv2.contourArea)
        # print(max_cnt)
        # for tmp in max_cnt:
        #     print(tmp)
        l = min(max_cnt[:, :, 0])
        r = max(max_cnt[:, :, 0])
        # print(l, r)

    cv2.drawContours(final_mask, [max_cnt], 0, (255, 255, 255), -1)
    # cv2.imshow('final_mask', final_mask)
    # cv2.waitKey(0)

    bit_and = cv2.bitwise_and(img, final_mask)
    bit_not = cv2.bitwise_not(final_mask)
    final = cv2.bitwise_or(bit_and, bit_not)
    # cv2.imshow('final', final)
    # cv2.waitKey(0)

    contrast = cv2.addWeighted(final, 1.5, final, 0, 0)
    # cv2.imshow('contrast', contrast)
    # cv2.waitKey(0)

    return contrast
Exemple #22
0
def overlay_images(img1, img2, mask):
    # img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
    # ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
    mask_inv = cv2.bitwise_not(mask)
    img1_bg = cv2.bitwise_and(img1, img1, mask=mask_inv)
    img2_fg = cv2.bitwise_and(img2, img2, mask=mask)
    dst = cv2.add(img1_bg, img2_fg)

    return dst
def read_image(image_path, inverted=False):
    if inverted:
        print("Inverted")
        return cv2.bitwise_not(cv2.imread(image_path))
    a = cv2.imread(image_path)
    if a is None:
        msg = "Couldn't load image from %s" % image_path
        raise Exception(msg)
    return a
Exemple #24
0
def _merge_pics(original_frame, solution_warped):
    ret, warp = cv2.threshold(solution_warped, 10, 255, cv2.THRESH_BINARY)
    mask_inv = cv2.bitwise_not(warp)
    background = cv2.bitwise_and(original_frame, original_frame, mask=mask_inv)

    foreground = cv2.cvtColor(solution_warped, cv2.COLOR_GRAY2BGR)
    foreground[solution_warped > 0] = (255, 55, 0)
    dst = cv2.add(background, foreground)
    return dst
Exemple #25
0
def removeLines(path, imgPath):
    img = cv2.imread(imgPath, 0)
    img = 255 - img
    _, thres = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    cv2.imwrite(path + "removed//thres.jpg", thres)

    horizontal = thres
    vertical = thres
    cols = horizontal.shape[1]
    h_kernel = cols // 30

    horizontalStructure = cv2.getStructuringElement(cv2.MORPH_RECT,
                                                    (h_kernel, 1))
    horizontal = cv2.erode(horizontal, horizontalStructure)
    horizontal = cv2.dilate(horizontal, horizontalStructure)
    cv2.imwrite(path + "removed//horizontal.jpg", horizontal)

    rows = vertical.shape[0]
    v_kernel = rows // 30
    verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT,
                                                  (1, v_kernel))
    vertical = cv2.erode(vertical, verticalStructure)
    vertical = cv2.dilate(vertical, verticalStructure)
    cv2.imwrite(path + "removed//vertical.jpg", vertical)

    _, edges = cv2.threshold(vertical, 0, 255,
                             cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    cv2.imwrite(path + "removed//edges.jpg", edges)

    kernel = np.ones((2, 2), dtype="uint8")
    dilated = cv2.dilate(edges, kernel)
    cv2.imwrite(path + "removed//dilated.jpg", dilated)

    mask = cv2.bitwise_not(vertical + horizontal)
    kernel = np.ones((2, 2), np.uint8)
    mask = cv2.erode(mask, kernel, iterations=3)
    cv2.imwrite(path + "removed//invh.jpg", mask)
    masked_img = cv2.bitwise_and(img, img, mask=mask)
    masked_img_inv = cv2.bitwise_not(masked_img)

    cv2.imwrite(path + "removed_result.jpg", masked_img_inv)

    return masked_img_inv
Exemple #26
0
def grab_digits(img: object, file_name: str) -> list:
    """A partir de uma imagem processada previamente irá realizar o seguinte:
    
    1) Inverte os pixels com bitwise.
    2) Encontra os contornos que delimitam os dígitos.
    3) Realiza o corte caso vários dígitos sejam interpretados juntos
    4) Retorna os dígitos na ordem em que aparecem na imagem."""

    adjusted_img = cv2.resize(img, (0, 0), fx=2, fy=2)
    processed_img = cv2.bitwise_not(adjusted_img)

    contours, _ = cv2.findContours(
        processed_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
    )

    interpreted_digits = []
    labels = []
    for contour in contours:
        x, y, w, h = cv2.boundingRect(contour)

        if w > 10 and h > 10:
            labels.append((x, y, w, h))

    # Ordenando com base nas maiores larguras w e desconsiderando o dígito de maior largura:
    sorted_labels = sorted(labels, key=lambda e: e[2])[:-1]
    size_sorted_labels = len(sorted_labels)

    # Caso tenham sido interpretados somente 3 dígitos, usa a largura mínima no lugar da média
    if size_sorted_labels >= 3:
        average = sum(i for _, _, i, _ in sorted_labels) / size_sorted_labels
    elif size_sorted_labels >= 2:
        average = min(labels, key=lambda e: e[2])[2]
    else:
        logger.debug(
            f"Imagem {file_name}: Não foi possível isolar os dígitos na imagem."
        )
        return []

    for element in labels:
        x, y, w, h = element

        if w / average > 1.5:
            logger.debug(f"Imagem {file_name}: Realizados cortes adicionais na imagem.")
            interpreted_digits = interpreted_digits + _trim_digits(
                element, average, picture=processed_img
            )
        else:
            # Cortando com um pixel de margem para cada lado
            interpreted_digits.append(
                (processed_img[y - 1 : y + h + 1, x - 1 : x + w + 1], x)
            )

    # Retorna os digitos interpretados e na ordem em que ocorrem na imagem
    logger.info(f"Imagem {file_name}: Processada com sucesso.")
    return [digits for digits, x in sorted(interpreted_digits, key=lambda e: e[1])]
def get_corners(painting_roi, draw=False):
    gray = cv2.cvtColor(painting_roi, cv2.COLOR_BGR2GRAY)
    blur = cv2.bilateralFilter(gray, 9, 75, 75)
    erosion = cv2.erode(blur, np.ones((9, 9), np.uint8), iterations=2)
    dilation = cv2.dilate(erosion, np.ones((9, 9), np.uint8), iterations=2)
    _, thresh = cv2.threshold(blur, 0, 255,
                              cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    # edges = auto_canny(thresh)

    h, w = thresh.shape[:2]
    mask = np.zeros((h + 2, w + 2), np.uint8)
    flood = thresh.copy()
    cv2.floodFill(flood, mask, (0, 0), 255)
    im_floodfill_inv = cv2.bitwise_not(flood)
    im_out = thresh | im_floodfill_inv

    contours, _ = cv2.findContours(im_out, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)

    # find the biggest countour (c) by the area
    c = max(contours, key=cv2.contourArea)

    x, y, w, h = cv2.boundingRect(c)
    bbox = x, y, w, h

    corners = cv2.goodFeaturesToTrack(im_out[y - 10:y + h + 10, x:x + w + 10],
                                      4,
                                      0.01,
                                      painting_roi.shape[0] / 3,
                                      useHarrisDetector=True)
    corners = np.int0(corners)
    corners = np.squeeze(corners)
    corners_img = painting_roi.copy()

    # draw the biggest contour (c) in green
    cv2.rectangle(corners_img, (x, y), (x + w + 10, y + h + 10), (0, 255, 0),
                  2)

    if draw:
        for i, corner in enumerate(corners):
            x_corner, y_corner = corner.ravel()
            cv2.circle(corners_img, (x_corner, y_corner), 3, 255, -1)
            cv2.putText(corners_img,
                        f'{i}', (x_corner + 3, y_corner + 3),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        0.75,
                        color=(255, 0, 0))
        cv2.imshow("corners", corners_img)

    # for corner in corners:
    #     corner[0] += x
    #     corner[1] += y

    return corners, bbox
Exemple #28
0
 def _crop_by_hue(self, img):
     '''
     ### Now deprecated! ###
     '''
     lower_bound = 5
     upper_bound = 175
     inv_mask = cv.inRange(img, lower_bound, upper_bound)
     red_mask = cv.bitwise_not(inv_mask)  # Crop for red zone in hue
     dst = cv.bitwise_and(red_mask, img)
     dst = cv.GaussianBlur(dst, (5, 5), 10)
     _, dst = cv.threshold(dst, 0, 255, cv.THRESH_OTSU)
     return dst
Exemple #29
0
def Fill_Holes(image):
    im_fill = image.copy()
    h, w = image.shape[:2]
    mask = np.zeros((h + 2, w + 2), np.uint8)

    cv2.floodFill(im_fill, mask, (0, 0), 255)

    im_fill_inv = cv2.bitwise_not(im_fill)

    filled_image = cv2.bitwise_or(im_fill_inv, image)

    return filled_image
Exemple #30
0
def preprocess_image(image, target_size):
    gray = image.convert('L')
    bw = gray.point(lambda x: 0 if x < 100 else 255, '1')
    bw.save("bw_image.jpg")
    img_array = cv2.imread("bw_image.jpg", cv2.IMREAD_GRAYSCALE)
    img_array = cv2.bitwise_not(img_array)
    new_array = cv2.resize(img_array, target_size)
    user_test = tensorflow.keras.utils.normalize(new_array, axis=1)
    user_test = user_test.reshape((1, 28, 28))
    predicted = model.predict([user_test])

    return predicted