Exemple #1
0
def rotate(image, angle, center=None, scale=1.0):
    assert image.dtype == np.uint8

    """Copy paste of imutils method but with INTER_NEAREST and BORDER_CONSTANT flags"""
    # grab the dimensions of the image
    (h, w) = image.shape[:2]

    # if the center is None, initialize it as the center of
    # the image
    if center is None:
        center = (w // 2, h // 2)

    # perform the rotation
    M = cv.getRotationMatrix2D(center, angle, scale)
    rotated = cv.warpAffine(
        image,
        M,
        (w, h),
        flags=cv.INTER_NEAREST,
        borderMode=cv.BORDER_CONSTANT,
        borderValue=0,
    )

    # return the rotated image
    return rotated
Exemple #2
0
    def rotate_90(self, image):
        #cv2.resize(image, (800, 800))
        #cv2.imshow('dddimage', image)
        #cv2.waitKey(0)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        gray = cv2.bitwise_not(gray)
        thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
        coords = np.column_stack(np.where(thresh > 0))
        angle = cv2.minAreaRect(coords)[-1]

        if angle < -45:
            angle = -(90 + angle)
        else:
            angle = -angle
        angle = 90

        (h, w) = image.shape[:2]
        #print(h, w)
        center = (w / 2, h / 2)
        M = cv2.getRotationMatrix2D(center, angle, 1.0)
        rotated = cv2.warpAffine(image, M, (w, h))
        #cv2.resize(rotated, (800, 1000))
        #cv2.imshow('rotated', rotated)
        #cv2.waitKey(0)
        file_path_name = 'img/rotate_img.jpg'
        cv2.imwrite(file_path_name, rotated)
        return file_path_name
Exemple #3
0
def deskew(img):
    skew_img = cv2.bitwise_not(img)  # Invert image

    # grab the (x, y) coordinates of all pixel values that
    # are greater than zero, then use these coordinates to
    # compute a rotated bounding box that contains all
    # coordinates
    coords = np.column_stack(np.where(skew_img > 0))
    angle = cv2.minAreaRect(coords)[-1]

    # the `cv2.minAreaRect` function returns values in the
    # range [-90, 0); as the rectangle rotates clockwise the
    # returned angle trends to 0 -- in this special case we
    # need to add 90 degrees to the angle
    if angle < -45:
        angle = -(90 + angle)

    # otherwise, just take the inverse of the angle to make
    # it positive
    else:
        angle = -angle

    # rotate the image to deskew it
    (h, w) = img.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(img, M, (w, h),
                             flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)

    return angle, rotated
Exemple #4
0
def correct_skew(image, delta=1, limit=5):
    def determine_score(arr, angle):
        data = inter.rotate(arr, angle, reshape=False, order=0)
        histogram = np.sum(data, axis=1)
        score = np.sum((histogram[1:] - histogram[:-1]) ** 2)
        return histogram, score

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] 

    scores = []
    angles = np.arange(-limit, limit + delta, delta)
    for angle in angles:
        histogram, score = determine_score(thresh, angle)
        scores.append(score)

    best_angle = angles[scores.index(max(scores))]

    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, best_angle, 1.0)
    rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, \
              borderMode=cv2.BORDER_REPLICATE)

    return best_angle, rotated
Exemple #5
0
def random_image_rotate(img, rotation_center):
    angle_deg = _random_normal_crop(1, 10)[0]
    M = cv2.getRotationMatrix2D(rotation_center, angle_deg, 1.0)
    nimg = cv2.warpAffine(img, M, dsize=img.shape[0:2])
    if len(nimg.shape) < 3:
        nimg = nimg[:, :, np.newaxis]
    return nimg  #.reshape(img.shape)
Exemple #6
0
def rotate_image(img, angle, crop):
    h, w = img.shape[:2]

    # 旋转角度的周期是360°
    angle %= 360

    # 用OpenCV内置函数计算仿射矩阵
    M_rotate = cv.getRotationMatrix2D((w / 2, h / 2), angle, 1)

    # 得到旋转后的图像
    img_rotated = cv.warpAffine(img, M_rotate, (w, h))

    # 如果需要裁剪去除黑边
    if crop:
        angle_crop = angle % 180  # 对于裁剪角度的等效周期是180°
        if angle_crop > 90:  # 并且关于90°对称
            angle_crop = 180 - angle_crop

        theta = angle_crop * np.pi / 180.0  # 转化角度为弧度
        hw_ratio = float(h) / float(w)  # 计算高宽比

        tan_theta = np.tan(theta)  # 计算裁剪边长系数的分子项
        numerator = np.cos(theta) + np.sin(theta) * tan_theta

        r = hw_ratio if h > w else 1 / hw_ratio  # 计算分母项中和宽高比相关的项
        denominator = r * tan_theta + 1  # 计算分母项

        crop_mult = numerator / denominator  # 计算最终的边长系数
        w_crop = int(round(crop_mult * w))  # 得到裁剪区域
        h_crop = int(round(crop_mult * h))
        x0 = int((w - w_crop) / 2)
        y0 = int((h - h_crop) / 2)
        img_rotated = crop_image(img_rotated, x0, y0, w_crop, h_crop)
    return img_rotated
Exemple #7
0
    def get_frame(self) -> np.array:
        # calculate the ROI points around self.pos
        x_0, x_1, y_0, y_1 = self.calculate_ROI()

        # add border to the ROI
        y_0 += int(self.crop_dimension / 2)
        x_0 += int(self.crop_dimension / 2)
        y_1 += int(self.crop_dimension * 3 / 2)
        x_1 += int(self.crop_dimension * 3 / 2)

        # crop out and copy of the area surrounding self.pos plus a border
        frame_to_rotate = self.borderd_picture[y_0:y_1, x_0:x_1].copy()

        # rotate the frame to the given viewangle and extract the resultframe
        shape = frame_to_rotate.shape
        rotation = cv2.getRotationMatrix2D((shape[0] / 2, shape[1] / 2),
                                           self.angle, 1)

        # avoid overflow
        self.avoid_overflow()

        # Perform actual rotation on cropped part of the image using the rotation matrix.
        # This will cut off parts of the image that don't fit a recangular bound (worst case: 45° rotation).
        # This is why we added a border to the cropped out area.
        result = cv2.warpAffine(frame_to_rotate, rotation,
                                (self.cols, self.rows))
        # crop out the actual area of self.crop_dimension, cutting away the border
        return result[int(self.crop_dimension / 2 +
                          self.aspect_ratio_diff):int(self.crop_dimension * 3 /
                                                      2),
                      int(self.crop_dimension / 2):int(self.crop_dimension *
                                                       3 / 2)]
    def rotate_image(self, image, angle):
        """
            Rotates the given image by the input angle in the counter-clockwise direction
            Parameters
            ----------
                image : ndim np.array
                    image to be rotated
                angle : float
                    angle of rotation as degrees.
            Returns
            -------
                rotated image as np.array

        """
        # create an tuple that contains height/2, width/2
        image_center = tuple(np.array(image.shape[1::-1]) / 2)
        # rot_mat 2x3 rotation mattrix
        rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
        # apply the affine transformation to the image
        # size of the output image image.shape[1::-1]
        result = cv2.warpAffine(image,
                                rot_mat,
                                image.shape[1::-1],
                                flags=cv2.INTER_LINEAR)
        return result
Exemple #9
0
    def alignment_matrix(self) -> np.array:
        """
        Returns a transformation matrix which can be used to align images
        based on the position of the eyes.
        """
        # Get the center of the eyes
        left_eye = Point.mean(self.left_eye)
        right_eye = Point.mean(self.right_eye)
        face_square = self.square()

        # Compute tilt
        delta_y = right_eye.y - left_eye.y
        delta_x = right_eye.x - left_eye.x
        angle = np.degrees(np.arctan2(delta_y, delta_x))

        # Normalized eye positions
        out_left_eye_x, out_left_eye_y = 0.3, 0.2
        out_right_eye_x, out_right_eye_y = 1.0 - out_left_eye_x, 1.0 - out_left_eye_y

        # Compute scale of output image
        dist = np.sqrt((delta_x**2) + (delta_y**2))
        out_dist = (out_right_eye_x - out_left_eye_x) * face_square.width
        scale = out_dist / dist

        # Compute rotation center point
        eyes_center = Point.mean([left_eye, right_eye])

        # Compute rotation matrix
        matrix = cv2.getRotationMatrix2D(eyes_center, angle, scale)

        # Update translation components
        matrix[0, 2] += (face_square.width * 0.5 - eyes_center.x)
        matrix[1, 2] += (face_square.height * out_left_eye_y - eyes_center.y)

        return matrix
Exemple #10
0
def cropRois(image, rects, multHeight=0.73, multWidth=0.97, topHeightCrop=30):
    crops = []
    data = {}
    # TODO cut off angle outliers here too
    angles = []

    for r in rects:
        box = rect2Box(r)
        W = r[1][0]
        H = r[1][1]

        Xs = [i[0] for i in box]
        Ys = [i[1] for i in box]
        x1 = min(Xs)
        x2 = max(Xs)
        y1 = min(Ys)
        y2 = max(Ys)

        rotated = False
        angle = r[2]

        if angle < -45:
            angle += 90
            rotated = True

        # calc the centroid
        center = (int((x1 + x2) / 2), int((y1 + y2) / 2))
        size = (int((x2 - x1)), int((y2 - y1)))
        #cv2.circle(image, center, 2, 255, -1)

        M = cv2.getRotationMatrix2D((size[0] / 2, size[1] / 2), angle, 1.0)

        # prepare the crop
        cropped = cv2.getRectSubPix(image, size, center)
        cropped = cv2.warpAffine(cropped, M, size)
        croppedW = W if not rotated else H
        croppedH = H if not rotated else W

        ratio = float(croppedW) / (croppedH)
        area = float(croppedW) * croppedH

        # if in the ratio
        if (ratio > 2 and ratio < 16):
            #text = "{0:.2f}-{1:.2f} ".format(ratio, area)
            #cv2.putText(image, text, center, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
            croppedRotated = cv2.getRectSubPix(
                cropped,
                (int(croppedW * multWidth),
                 int(croppedH *
                     multHeight if croppedH < topHeightCrop else croppedH *
                     0.9)), (size[0] / 2, size[1] / 2))
            # save the angles to calc the avg/std
            angles.append(angle)
            # save the crops
            crops.append(croppedRotated)
            # will process from top to bottom, so save it to sort later
            data[y1] = [croppedRotated, area, ratio, angle]

    return data, np.mean(np.array(angles)), np.std(np.array(angles))
def rotate(xb, yb, angle):
    M_rotate = cv2.getRotationMatrix2D((size / 2, size / 2), angle, 1)

    xb = cv2.warpAffine(xb, M_rotate, (size, size))

    yb = cv2.warpAffine(yb, M_rotate, (size, size))

    return xb, yb
def rotate_image(image, angle):
    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    result = cv2.warpAffine(image,
                            rot_mat,
                            image.shape[1::-1],
                            flags=cv2.INTER_LINEAR)
    return result
Exemple #13
0
def rotate(img, angle, rotPoint=None):
    (height, width) = img.shape[:2]
    if rotPoint is None:
        rotPoint = (width//2, height//2)

    rotMat = cv.getRotationMatrix2D(rotPoint, angle, 1.0)
    dimensions = (width, height)
    return cv.warpAffine(img, rotMat, dimensions)
def crop_and_show_images():
    show_images = True

    video_path = Path(
        "/Users/sebastian/PycharmProjects/forgerydetection/722_458")
    with open(video_path / "relative_bb.json", "r") as f:
        relative_bb = json.load(f)

    shape_predictor = dlib.shape_predictor(
        "/Users/sebastian/PycharmProjects/forgerydetection/shape_predictor_68_face_landmarks.dat"
    )

    for image in tqdm(sorted(video_path.glob("*.png"))):
        img = cv2.imread(str(image))
        total_width, total_height = len(img[0]), len(img)

        # show video_crop image
        if show_images:
            cv2.imshow(str(image.name), img)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        relative_bb_values = relative_bb[str(image.with_suffix("").name)]
        x, y, w, h = calculate_relative_bb(total_width, total_height,
                                           relative_bb_values)

        # show local bb_image
        new_image = img[y:y + w, x:x + h]
        if show_images:
            cv2.imshow(str(image.name), new_image)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # show aligned global_image
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        box = dlib.rectangle(left=x, top=y, right=x + w, bottom=y + h)
        shape = shape_predictor(gray, box)
        shape = shape_to_np(shape)
        left_eye = np.mean(shape[36:42], axis=0)
        right_eye = np.mean(shape[42:48], axis=0)
        dx, dy = right_eye - left_eye
        # Calculate rotation angle with x & y component of the eyes vector
        angle = np.rad2deg(np.arctan2(dy, dx))
        center = np.mean(shape, axis=0)
        R = cv2.getRotationMatrix2D(tuple(center), angle, 1.0)
        aligned_image = cv2.warpAffine(img, R, (total_width, total_height))

        if show_images:
            cv2.imshow(str(image.name), aligned_image)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        aligned_image = aligned_image[y:y + w, x:x + h]

        if show_images:
            cv2.imshow(str(image.name), aligned_image)
            cv2.waitKey(0)
            cv2.destroyAllWindows()
Exemple #15
0
def rotate(image, angle, center=None, scale=1.0):
    (h, w) = image.shape[:2]

    if center is None:
        center = (w // 2, h // 2)

    M = cv2.getRotationMatrix2D(center, angle, scale)
    rotated = cv2.warpAffine(image, M, (w, h))
    return rotated
Exemple #16
0
def rotation(image, angle):

    __img = cv.imread(image)
    __rows,__cols,__colors = __img.shape

    __M = cv.getRotationMatrix2D((__cols/2,__rows/2),angle,1)
    __img = cv.warpAffine(__img,__M,(__cols,__rows))

    return __img
Exemple #17
0
 def rotate(self):
     angle = np.random.randint(-25, 25)
     rows, cols = self.input_image.shape
     m = getRotationMatrix2D(center=(cols / 2, rows / 2),
                             angle=angle,
                             scale=1)
     return warpAffine(self.input_image, m,
                       (cols, rows)), warpAffine(self.label, m,
                                                 (cols, rows))
    def nDegreeRotation(self, image, degree):
        """ NDEGREEROTATION FUNCTION """
        (rows, cols) = image.shape[:2]

        matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), degree, 1)
        rotation = cv2.warpAffine(image,
                                  matrix, (cols, rows),
                                  borderValue=(255, 255, 255))

        return rotation
Exemple #19
0
def motion_blur(gray, degree, angle):
    gray = np.array(gray)
    M = cv2.getRotationMatrix2D((round(degree / 2), round(degree / 2)), angle, 1)
    motion_blur_kernel = np.diag(np.ones(degree))
    motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree))
    PSF = motion_blur_kernel / degree
    blurred = cv2.filter2D(gray, -1, PSF)
    blurred = cv2.normalize(blurred,None, 0, 255, cv2.NORM_MINMAX)
    blurred = np.array(blurred, dtype=np.uint8)
    return blurred,PSF
 def rotate(self, image, angle=0, center=None, scale=0.9):
     #rotate the image with "angle"
     rows, cols = image.shape[:2]
     while angle == 0:
         angle = random.randrange(-180, 180)
     if center is None:
         center = (cols / 2, rows / 2)
     #calculated the matrix
     Martrix_rot = cv2.getRotationMatrix2D(center, angle, scale)
     rotated = cv2.warpAffine(image, Martrix_rot, (cols, rows))
     return rotated
Exemple #21
0
def deskew(image):
    coords = np.column_stack(np.where(image > 0))
    angle = cv2.minAreaRect(coords)[-1]
    if angle < -45:
        angle = -(90 + angle)
    else:
        angle = -angle
    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
    return rotated
Exemple #22
0
def rot(image,image_width,image_height,angle):
    image_heightNew = int(image_width * fabs(sin(radians(angle))) + image_height * fabs(cos(radians(angle))))
    image_widthNew = int(image_height * fabs(sin(radians(angle))) + image_width * fabs(cos(radians(angle))))

    center = (image_width/2,image_height/2)
    M = cv2.getRotationMatrix2D(center, angle, 1)

    M[0,2] += (image_widthNew - image_width)/2
    M[1,2] += (image_heightNew - image_height)/2

    rotated = cv2.warpAffine(image,M,(image_widthNew, image_heightNew), borderValue = (255, 255, 255))
    return rotated
Exemple #23
0
def rotate(img, angle, scale=1.0):
    #旋转
    height, width = img.shape[:2]  #获取图像的高和宽
    center = (width / 2, height / 2)  #取图像的中点

    M = cv.getRotationMatrix2D(center, angle, scale)  #获得图像绕着某一点的旋转矩阵
    rotated = cv.warpAffine(img, M, (height, width))
    #cv.warpAffine()的第二个参数是变换矩阵,第三个参数是输出图像的大小
    # cv.imshow("overturn-hv", rotated)
    # cv.waitKey(0)
    # cv.destroyAllWindows()
    return rotated
Exemple #24
0
def image_transformation(file):
    # open image and apply filter
    img = cv2.imdecode(numpy.frombuffer(file, numpy.uint8),
                       cv2.IMREAD_UNCHANGED)
    img = cv2.resize(img, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    kernel = numpy.ones((1, 1), numpy.uint8)
    img = cv2.dilate(img, kernel, iterations=1)
    img = cv2.erode(img, kernel, iterations=1)
    img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

    # get coordinates
    coords = numpy.column_stack(numpy.where(img > 0))
    angle = cv2.minAreaRect(coords)[-1]
    # the `cv2.minAreaRect` function returns values in the
    # range [-90, 0); as the rectangle rotates clockwise the
    # returned angle trends to 0 -- in this special case we
    # need to add 90 degrees to the angle
    if angle < -45:
        angle = -(90 + angle)
    # otherwise, just take the inverse of the angle to make
    # it positive
    else:
        angle = -angle

    (h, w) = img.shape[:2]
    center = (w // 2, h // 2)
    m = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(img,
                             m, (w, h),
                             flags=cv2.INTER_CUBIC,
                             borderMode=cv2.BORDER_REPLICATE)
    img = rotated

    ret, thresh_binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    value_thresh_binary = cv2.Laplacian(thresh_binary, cv2.CV_64F).var()

    blur = cv2.GaussianBlur(img, (5, 5), 0)
    # blur = gaussian_blur(img, 5)
    # img = otsu(blur)
    ret3, thresh_otsu = cv2.threshold(blur, 0, 255,
                                      cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    value_otsu = cv2.Laplacian(thresh_otsu, cv2.CV_64F).var()

    if value_thresh_binary > value_otsu:
        print(value_thresh_binary)
        img = thresh_binary
    else:
        print(value_otsu)
        img = thresh_otsu
    return img
    def __make_batch(self, data):
        if data is not None:
            batch = []
            resized_batch = []

            for im_p in data:
                original_image = cv.imread(im_p)

                if self.__augmentation_settings:
                    if random.random(
                    ) >= self.__augmentation_settings.blur_chance:
                        original_image = cv.GaussianBlur(
                            original_image, (3, 3),
                            self.__augmentation_settings.blur_amount)

                    if random.random(
                    ) >= self.__augmentation_settings.flip_chance:
                        original_image = cv.flip(original_image,
                                                 random.randint(-1, 1))

                    if random.random(
                    ) >= self.__augmentation_settings.rotation_chance:
                        rows, cols, c = original_image.shape
                        M = cv.getRotationMatrix2D(
                            (cols / 2, rows / 2),
                            random.random() *
                            self.__augmentation_settings.rotation_ammount, 1)
                        original_image = cv.warpAffine(original_image, M,
                                                       (cols, rows))

                batch.append(
                    cv.cvtColor(original_image, cv.COLOR_BGR2RGB) / 127.5 -
                    1.0)
                if self.__secondary_size:
                    resized_batch.append(
                        cv.cvtColor(
                            cv.resize(
                                original_image,
                                dsize=(self.__secondary_size[0],
                                       self.__secondary_size[1]),
                                interpolation=(cv.INTER_AREA if (
                                    original_image.shape[0] > self.
                                    __secondary_size[1] and original_image.
                                    shape[1] > self.__secondary_size[0]
                                ) else cv.INTER_CUBIC)), cv.COLOR_BGR2RGB) /
                        127.5 - 1.0)

            if batch: self.__batches.append(np.array(batch).astype(np.float32))
            if resized_batch:
                self.__resized_batches.append(
                    np.array(resized_batch).astype(np.float32))
Exemple #26
0
def img_rotate(img, angle):
    '''
    @param:原始图像
    @param:旋转角度
    return dstimg,M
    '''
    h, w, = img.shape[0], img.shape[1]
    cx, cy = int(w / 2), int(h / 2)
    # 仿射变换矩阵
    M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
    rotated = cv2.warpAffine(img, M, (w, h))
    # cv2.imshow('rotate',rotated)
    # cv2.waitKey()
    return rotated, M
Exemple #27
0
def draw_image(src, dst, x, y, rotation):
    (h, w) = src.shape[:2]
    bounds = np.array([[-w / 2, -h / 2], [w / 2, -h / 2], [w / 2, h / 2],
                       [-w / 2, h / 2]])
    for i, v in enumerate(bounds):
        bounds[i] = rotate(v, rotation) + (x, y)
    x_min, x_max = min(np.concatenate(bounds[:, :1])), max(
        np.concatenate(bounds[:, :1]))
    y_min, y_max = min(np.concatenate(bounds[:, 1:])), max(
        np.concatenate(bounds[:, 1:]))
    M = cv2.getRotationMatrix2D((w / 2, h / 2), np.rad2deg(rotation), 1.0)
    src_rotated = cv2.warpAffine(src, M,
                                 (int(x_max - x_min), int(y_max - y_min)))
    (h, w) = src_rotated.shape[:2]
    blit_image(src_rotated, dst, int(x - w / 2), int(y - h / 2))
Exemple #28
0
    def __rotation(self, image, angle, center=None, scale=1.0):
        """
        旋转图片
        :param image:待处理图像
        :param angle:角度
        :param center:中心点
        :param scale:
        :return:the rotated image
        """

        (height, width) = image.shape[:2]  # 长宽
        if center is None:  # 默认中心为中点
            center = (width // 2, height // 2)
        Matrix = getRotationMatrix2D(center, angle, scale)
        rotated = warpAffine(image, Matrix, (width, height))
        return rotated
Exemple #29
0
def dataset_augmentation(images_array):
    dataset = []
    for image in images_array:
            horizontal_flipped_img = cv2.flip(image, 1)
            dataset.append(horizontal_flipped_img)

            vertical_flipped_img = cv2.flip(image, 0)
            dataset.append(vertical_flipped_img)

            angles = [10, 15, 20]
            for angle in angles:
                height, width = image.shape[:2]
                matrix = cv2.getRotationMatrix2D((int(width/2), int(height/2)), angle, 1)
                rotated_img = cv2.warpAffine(image, matrix, (width, height))
                dataset.append(rotated_img)
    return np.array(dataset)
def imageRotate(image, angle, central):
    #图像旋转操作, 同时返回图像中心旋转后的坐标
    row, col = image.shape[:2]
    # print(image.shape)
    #getRotationMatrix2D(),这个函数需要三个参数,
    ang = angle - 90
    #旋转中心,旋转角度(逆 时针),旋转后图像的缩放比例,比如下例为1:
    M = cv2.getRotationMatrix2D((central[0], central[1]), ang, 1)
    #第一个参数为输入图像,第二个参数为仿射变换矩阵,第三个参数为变换后大小,第四个参数为边界外填充颜色
    dst = cv2.warpAffine(image, M, (row, col), borderValue=(255, 255, 255))
    central = np.array(central)
    central = np.r_[central, [1]]
    trans_c = np.matmul(np.array(M), central.T)
    ret = tuple(trans_c)
    ret1 = int(ret[0])
    ret2 = int(ret[1])
    return dst, (ret1, ret2)