Exemple #1
0
    def getPoseEstimation(imgSize, imagePoints):
        # 3D model points.
        modelPoints = np.array([
            (0.0, 0.0, 0.0),  # Nose tip
            (0.0, -330.0, -65.0),  # Chin
            (-225.0, 170.0, -135.0),  # Left eye left corner
            (225.0, 170.0, -135.0),  # Right eye right corne
            (-150.0, -150.0, -125.0),  # Left Mouth corner
            (150.0, -150.0, -125.0)  # Right mouth corner
        ])

        # Camera internals
        focalLength = imgSize[1]
        center = (imgSize[1] / 2, imgSize[0] / 2)
        cameraMatrix = np.array([[focalLength, 0, center[0]],
                                 [0, focalLength, center[1]], [0, 0, 1]],
                                dtype="double")

        dist_coeffs = np.zeros((4, 1))  # Assuming no lens distortion
        (success, rotationVector,
         translationVector) = cv2.solvePnP(modelPoints,
                                           imagePoints,
                                           cameraMatrix,
                                           dist_coeffs,
                                           flags=cv2.SOLVEPNP_ITERATIVE)

        return success, rotationVector, translationVector, cameraMatrix, dist_coeffs
def PoseEstimation(path_for_read, image_points):
    # Read Image
    im = cv2.imread(path_for_read)
    size = im.shape

    # Default 3D model points.
    model_points = np.array([
        (0.0, 0.0, 0.0),  # Nose tip
        (0.0, -330.0, -65.0),  # Chin
        (-225.0, 170.0, -135.0),  # Left eye left corner
        (225.0, 170.0, -135.0),  # Right eye right corne
        (-150.0, -150.0, -125.0),  # Left Mouth corner
        (150.0, -150.0, -125.0)  # Right mouth corner
    ])

    # Camera internals
    focal_length = size[1]
    center = (size[1] / 2, size[0] / 2)
    camera_matrix = np.array([[focal_length, 0, center[0]],
                              [0, focal_length, center[1]], [0, 0, 1]],
                             dtype="double")

    print('Camera Matrix: ' + '\n' + format(camera_matrix))
    dist_coeffs = np.zeros((4, 1))  # Assuming no lens distortion
    (success, rotation_vector,
     translation_vector) = cv2.solvePnP(model_points,
                                        image_points,
                                        camera_matrix,
                                        dist_coeffs,
                                        flags=cv2.SOLVEPNP_ITERATIVE)
    print('Rotation Vector: ' + '\n' + format(rotation_vector))
    print('Translation Vector: ' + '\n' + format(translation_vector))

    # Project a 3D point (0, 0, 1000.0) onto the image plane.
    # We use this to draw a line sticking out of the nose
    nose_end_point2D = cv2.projectPoints(
        np.array([(0.0, 0.0, float(focal_length))]), rotation_vector,
        translation_vector, camera_matrix, dist_coeffs)[0]
    print('nose_end_point2D: ' + str(nose_end_point2D))
    for p in image_points:
        cv2.circle(im, (int(p[0]), int(p[1])), 3, (0, 0, 255), -1)
    p1 = (int(image_points[0][0]), int(image_points[0][1]))
    p2 = (int(nose_end_point2D[0][0][0]), int(nose_end_point2D[0][0][1]))
    p12_vector = ((int(p1[0]) - int(p2[0])), (int(p1[1]) - int(p2[1])))
    p2p1_distance = np.sqrt(
        np.square(int(p1[0]) - int(p2[0])) +
        np.square(int(p1[1]) - int(p2[1])))
    p2p1x_tangent = (int(p1[1]) - int(p2[1])) / (int(p1[0]) - int(p2[0]))
    print('p12_vector: ' + str(p12_vector))
    print('p2p1x_tangent' + str(p2p1x_tangent))
    print('p2p1_distance: ' + str(p2p1_distance / focal_length))

    cv2.line(im, p1, p2, (255, 0, 0), 2)
    # Display image
    cv2.imshow("Output", im)
    cv2.waitKey(0)
Exemple #3
0
def solve(world, worldlist, imagelist):
    worldx = world.shape[0]
    worldy = world.shape[1]
    world = world.reshape((worldx * worldy, 3))
    K = np.float32([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    _, rotation_vector, translation_vector = cv2.solvePnP(
        worldlist, imagelist, K, np.zeros(5))

    image_points, _ = cv2.projectPoints(world, rotation_vector,
                                        translation_vector, K, np.zeros(5))
    image_points = image_points.reshape((worldx, worldy, 2))

    return image_points
Exemple #4
0
    def solve(self):
        cubic_slopes = [0.0, 0.0]
        self.K = np.float32([[1, 0, 0],
                        [0, 1, 0],
                        [0, 0, 1]])
        _, rvec, tvec = cv.solvePnP(
            self.world_list, self.image_list, self.K, np.zeros(5))

        parmas = np.hstack((np.array(rvec).flatten(),
                            np.array(tvec).flatten(),
                            np.array(cubic_slopes).flatten(),
                            ))

        return parmas
Exemple #5
0
    def find_extrinsic(self):
        with np.load('img_obj_points.npz') as X:
            imgpoints, objpoints = [X[i] for i in ('arr_0', 'arr_1')]
        with np.load('output.npz') as X:
            mtx, dist, _, _ = [
                X[i] for i in ('arr_0', 'arr_1', 'arr_2', 'arr_3')
            ]

        num = self.spinBox.value()

        retval, rvecs, tvecs = cv.solvePnP(objpoints[num - 1],
                                           imgpoints[num - 1], mtx, dist)
        dst, _ = cv.Rodrigues(rvecs)
        extrinsic_mtx = cv.hconcat([dst, tvecs])
        print(extrinsic_mtx)
Exemple #6
0
def AxisAndBox():
    # 读取相机参数
    with open(path2+'//calibration_parameters.yaml') as file:
        documents = yaml.full_load(file)
    data = list(documents.values())
    mtx = np.asarray(data[2])
    #dist = np.asarray(data[1])

    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objp = np.zeros((13 * 6, 3), np.float32)
    objp[:, :2] = np.mgrid[0:13, 0:6].T.reshape(-1, 2)
    axis = np.float32([[0, 0, 0], [0, 3, 0], [3, 3, 0], [3, 0, 0],
                        [0, 0, -3], [0, 3, -3], [3, 3, -3], [3, 0, -3]])
    axis2 = np.float32([[4, 0, 0], [0, 4, 0], [0, 0, -4]]).reshape(-1, 3)
    
    num = 0  # 计数器
    images2 = glob.glob(path2+'//tianyi_gao_undistorted*.jpg')
    for fname in images2:
        num = num+1
        img = cv2.imread(fname)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, (13, 6), None)
        if ret is True:
            corners2 = cv2.cornerSubPix(
                gray, corners, (11, 11), (-1, -1), criteria)

            # 计算外参,估计相机位姿
            _, rvecs, tvecs = cv2.solvePnP(objp, corners2, mtx, None)
            
            # 将3-D点投影到像平面
            imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, None)
            imgpts2, jac2 = cv2.projectPoints(axis2, rvecs, tvecs, mtx, None)
            img = drawBox(img, corners2, imgpts)
            img = drawAxis(img, corners2, imgpts2)
            cv2.imwrite(path2+"//tianyi_gao_"+str(num)+".jpg", img)
            if len(images2) < 16:  # 图片过多时,不在UI中展示
                cv2.namedWindow('press any key to continue', cv2.WINDOW_NORMAL)
                cv2.imshow('press any key to continue', img)
                cv2.waitKey(0)
    print('Draw Done')
    cv2.destroyAllWindows()
    return num, path2#返回处理图片数和结果存储路径
Exemple #7
0
    def return_roll_pitch_yaw(self, image, radians=False):
        """ 
        Return the the roll pitch and yaw angles associated with the input image.

          @param image It is a colour image. It must be >= 64 pixel.
          @param radians When True it returns the angle in radians, otherwise in degrees.
         """
        # The dlib shape predictor returns 68 points,
        # we are interested only in a few of those
        TRACKED_POINTS = (0, 4, 8, 12, 16, 17, 26, 27, 30, 33, 36, 39, 42, 45,
                          62)

        # Antropometric constant values of the human head.
        # Check the wikipedia EN page and:
        # "Head-and-Face Anthropometric Survey of U.S. Respirator Users"
        #
        # X-Y-Z with X pointing forward and Y on the left and Z up.
        # The X-Y-Z coordinates used are like the standard
        # coordinates of ROS (robotic operative system)
        # OpenCV uses the reference usually used in computer vision:
        #    X points to the right, Y down, Z to the front #
        # The Male mean interpupillary distance is 64.7 mm
        #   (https://en.wikipedia.org/wiki/Interpupillary_distance)
        #
        P3D_RIGHT_SIDE = np.float32([-100.0, -77.5, -5.0])  #0
        P3D_GONION_RIGHT = np.float32([-110.0, -77.5, -85.0])  #4
        P3D_MENTON = np.float32([0.0, 0.0, -122.7])  #8
        P3D_GONION_LEFT = np.float32([-110.0, 77.5, -85.0])  #12
        P3D_LEFT_SIDE = np.float32([-100.0, 77.5, -5.0])  #16
        P3D_FRONTAL_BREADTH_RIGHT = np.float32([-20.0, -56.1, 10.0])  #17
        P3D_FRONTAL_BREADTH_LEFT = np.float32([-20.0, 56.1, 10.0])  #26
        P3D_SELLION = np.float32([0.0, 0.0, 0.0])  #27 This is the world origin
        P3D_NOSE = np.float32([21.1, 0.0, -48.0])  #30
        P3D_SUB_NOSE = np.float32([5.0, 0.0, -52.0])  #33
        P3D_RIGHT_EYE = np.float32([-20.0, -32.35, -5.0])  #36
        P3D_RIGHT_TEAR = np.float32([-10.0, -20.25, -5.0])  #39
        P3D_LEFT_TEAR = np.float32([-10.0, 20.25, -5.0])  #42
        P3D_LEFT_EYE = np.float32([-20.0, 32.35, -5.0])  #45
        #P3D_LIP_RIGHT = np.float32([-20.0, 65.5,-5.0]) #48
        #P3D_LIP_LEFT = np.float32([-20.0, 65.5,-5.0]) #54
        P3D_STOMION = np.float32([10.0, 0.0, -75.0])  #62

        # This matrix contains the 3D points of the
        # 11 landmarks we want to find. It has been
        # obtained from antrophometric measurement
        # of the human head.
        landmarks_3D = np.float32([
            P3D_RIGHT_SIDE, P3D_GONION_RIGHT, P3D_MENTON, P3D_GONION_LEFT,
            P3D_LEFT_SIDE, P3D_FRONTAL_BREADTH_RIGHT, P3D_FRONTAL_BREADTH_LEFT,
            P3D_SELLION, P3D_NOSE, P3D_SUB_NOSE, P3D_RIGHT_EYE, P3D_RIGHT_TEAR,
            P3D_LEFT_TEAR, P3D_LEFT_EYE, P3D_STOMION
        ])

        # Return the 2D position of our landmarks
        img_h, img_w, img_d = image.shape
        landmarks_2D = self._return_landmarks(inputImg=image,
                                              roiX=0,
                                              roiY=img_w,
                                              roiW=img_w,
                                              roiH=img_h,
                                              points_to_return=TRACKED_POINTS)

        # Print som red dots on the image
        # for point in landmarks_2D:
        #     cv2.circle(frame,( point[0], point[1] ), 2, (0,0,255), -1)

        # Applying the PnP solver to find the 3D pose
        # of the head from the 2D position of the #landmarks.
        # retval - bool
        # rvec - Output rotation vector that, together with tvec, brings
        # points from the world coordinate system to the camera coordinate system.
        # tvec - Output translation vector. It is the position of the world origin (SELLION) in camera co-ords
        retval, rvec, tvec = cv2.solvePnP(landmarks_3D, landmarks_2D,
                                          self.camera_matrix,
                                          self.camera_distortion)

        # Get as input the rotational vector
        # Return a rotational matrix
        rmat, _ = cv2.Rodrigues(rvec)

        # euler_angles contain (pitch, yaw, roll)
        # euler_angles = cv.DecomposeProjectionMatrix(
        #                                    projMatrix=rmat,
        #                                    cameraMatrix=camera_matrix,
        #                                    rotMatrix,
        #                                    transVect,
        #                                    rotMatrX=None,
        #                                    rotMatrY=None,
        #                                    rotMatrZ=None)

        head_pose = [
            rmat[0, 0], rmat[0, 1], rmat[0, 2], tvec[0], rmat[1, 0],
            rmat[1, 1], rmat[1, 2], tvec[1], rmat[2, 0], rmat[2, 1],
            rmat[2, 2], tvec[2], 0.0, 0.0, 0.0, 1.0
        ]

        # print(head_pose) #TODO remove this line
        return self.rotationMatrixToEulerAngles(rmat)
def square_line(origin, edges, hough):
    '''
    输入:原始图片,黑白边线图,hough数组
    输出:带坐标的原图,Table_2D
    '''
    internal_calibration = get_camera_intrinsic()
    internal_calibration = np.array(internal_calibration, dtype='float32')
    distCoeffs = np.zeros((8, 1), dtype='float32')
    img = copy.copy(origin)
    lines = cv2.HoughLines(edges, hough[0], hough[1], hough[2])

    # rho:ρ,图片左上角向直线所做垂线的长度
    # theta:Θ,图片左上角向直线所做垂线与顶边夹角
    # 垂足高于原点时,ρ为负,Θ为垂线关于原点的对称线与顶边的夹角
    top_line_theta = []
    top_line_rho = []
    left_line_theta = []
    left_line_rho = []
    right_line_theta = []
    right_line_rho = []
    bottom_line_theta = []
    bottom_line_rho = []
    horizon = []
    summ = 0
    final_lines = np.zeros((4, 2))
    if len(lines) < 4:
        print("\033[0;31m未检测到方桌!\033[0m")
        return edges
    else:
        for line in lines:
            for rho, theta in line:
                if (theta > math.pi / 3 and theta < math.pi * 2 / 3):  # 横线
                    horizon.append(line)
                elif rho < 0:  # 右边
                    right_line_rho.append(rho)
                    right_line_theta.append(theta)
                else:  # 左边
                    left_line_theta.append(theta)
                    left_line_rho.append(rho)
        top, bottom = Cluster(horizon, 180, 360)  # 将横线依据abs(rho)分为上下
        for line in top:
            for rho, theta in line:
                top_line_rho.append(rho)
                top_line_theta.append(theta)
        for line in bottom:
            for rho, theta in line:
                bottom_line_rho.append(rho)
                bottom_line_theta.append(theta)

        for i in right_line_theta:
            summ += i
        right_line_theta_average = summ / len(right_line_theta)
        final_lines[0, 1] = right_line_theta_average
        summ = 0
        for i in right_line_rho:
            summ += i
        right_line_rho_average = summ / len(right_line_rho)
        final_lines[0, 0] = right_line_rho_average
        summ = 0

        for i in left_line_theta:
            summ += i
        left_line_theta_average = summ / len(left_line_theta)
        final_lines[1, 1] = left_line_theta_average
        summ = 0
        for i in left_line_rho:
            summ += i
        left_line_rho_average = summ / len(left_line_rho)
        final_lines[1, 0] = left_line_rho_average
        summ = 0

        for i in top_line_theta:
            summ += i
        top_line_theta_average = summ / len(top_line_theta)
        final_lines[2, 1] = top_line_theta_average
        summ = 0
        for i in top_line_rho:
            summ += i
        top_line_rho_average = summ / len(top_line_rho)
        final_lines[2, 0] = top_line_rho_average
        summ = 0

        for i in bottom_line_theta:
            summ += i
        bottom_line_theta_average = summ / len(bottom_line_theta)
        final_lines[3, 1] = bottom_line_theta_average
        summ = 0
        for i in bottom_line_rho:
            summ += i
        bottom_line_rho_average = summ / len(bottom_line_rho)
        final_lines[3, 0] = bottom_line_rho_average
        summ = 0
        # print(final_lines)
        final_lines = np.array(final_lines)
        for i in range(4):
            theta = final_lines[i, 1]
            rho = final_lines[i, 0]
            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a * rho
            y0 = b * rho
            x1 = int(x0 + 1000 * (-b))
            y1 = int(y0 + 1000 * (a))
            x2 = int(x0 - 1000 * (-b))
            y2 = int(y0 - 1000 * (a))
            cv2.line(img, (x1, y1), (x2, y2), (200, 135, 100), 2)
            # 标记直线编号
            string = str(i)
            cv2.putText(img, string, (int(x0), int(y0)),
                        cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 0, 255), 1)

        left_top_point_x, left_top_point_y = getcrosspoint(
            left_line_rho_average, left_line_theta_average,
            top_line_rho_average, top_line_theta_average)
        left_bottom_point_x, left_bottom_point_y = getcrosspoint(
            left_line_rho_average, left_line_theta_average,
            bottom_line_rho_average, bottom_line_theta_average)
        right_top_point_x, right_top_point_y = getcrosspoint(
            right_line_rho_average, right_line_theta_average,
            top_line_rho_average, top_line_theta_average)
        right_bottom_point_x, right_bottom_point_y = getcrosspoint(
            right_line_rho_average, right_line_theta_average,
            bottom_line_rho_average, bottom_line_theta_average)

        Table_2D = []
        Table_2D.append([left_top_point_x, left_top_point_y])
        Table_2D.append([left_bottom_point_x, left_bottom_point_y])
        Table_2D.append([right_top_point_x, right_top_point_y])
        Table_2D.append([right_bottom_point_x, right_bottom_point_y])
        cv2.circle(img, (left_top_point_x, left_top_point_y), 3, (255, 0, 0),
                   -1)
        cv2.circle(img, (left_bottom_point_x, left_bottom_point_y), 3,
                   (255, 0, 0), -1)
        cv2.circle(img, (right_top_point_x, right_top_point_y), 3, (255, 0, 0),
                   -1)
        cv2.circle(img, (right_bottom_point_x, right_bottom_point_y), 3,
                   (255, 0, 0), -1)
        Table_3D = []
        Table_3D.append([0, 0, 0])
        Table_3D.append([0, 55, 0])
        Table_3D.append([55, 0, 0])
        Table_3D.append([55, 55, 0])
        Table_3D = np.array(Table_3D, dtype='float32')
        Table_2D = np.array(Table_2D, dtype='float32')
        _, rvector, tvector = cv2.solvePnP(Table_3D, Table_2D,
                                           internal_calibration, distCoeffs)
        axis = np.float32([[55, 0, 0], [0, 55, 0], [0, 0, -20]]).reshape(-1, 3)
        imgpts, _ = cv2.projectPoints(
            axis,
            rvector,
            tvector,
            internal_calibration,
            distCoeffs,
        )
        lined = draw(img, (left_top_point_x, left_top_point_y), imgpts)
    return lined, Table_2D
Exemple #9
0
    def check_drowsiness_yawn(self, img, rect, dtype="int"):
        self.frame = img

        img = img[:, :, [2, 1, 0]]  # BGR => RGB
        yawn = False
        drowsiness = False

        landmarks = self.predictor(img, rect)

        # get the left and right eye coordinates
        left_eye = []
        for i in range(36, 42):
            left_eye.append([landmarks.part(i).x, landmarks.part(i).y])
        right_eye = []
        for i in range(42, 48):
            right_eye.append([landmarks.part(i).x, landmarks.part(i).y])

        # calculate the eye aspect ratio for both eyes
        left_ear = self.eye_aspect_ratio(left_eye)
        right_ear = self.eye_aspect_ratio(right_eye)

        # average the eye aspect ratio together for both eyes
        ear = (left_ear + right_ear) / 2.0

        # print('ear:', ear, 'eye_threshold', self.eye_threshold)
        # check to see if the eye aspect ratio is below the eye threshold
        if self.t_start and ear < self.eye_threshold:
            self.t_end = time.time()
            t = self.t_end - self.t_start
            if t >= 1.3:
                drowsiness = True
        else:
            self.t_start = time.time()

        # check yawn
        top_lips = []
        bottom_lips = []
        for i in range(0, 68):
            if 50 <= i <= 53 or 61 <= i <= 64:
                top_lips.append((landmarks.part(i).x, landmarks.part(i).y))

            elif 65 <= i <= 68 or 56 <= i <= 59:
                bottom_lips.append((landmarks.part(i).x, landmarks.part(i).y))

        top_lips = np.squeeze(np.asarray(top_lips))
        bottom_lips = np.squeeze(np.asarray(bottom_lips))
        top_lips_mean = np.array(np.mean(top_lips, axis=0), dtype=dtype)
        bottom_lips_mean = np.array(np.mean(bottom_lips, axis=0), dtype=dtype)
        top_lips_mean = top_lips_mean.reshape(-1)
        bottom_lips_mean = bottom_lips_mean.reshape(-1)

        #distance=math.sqrt((bottom_lips_mean[0] - top_lips_mean[0])**2 + (bottom_lips_mean[-1] - top_lips_mean[-1])**2)
        distance = bottom_lips_mean[-1] - top_lips_mean[-1]

        threshold = (rect.bottom() - rect.top()) * self.mouth_threshold
        if distance > threshold:
            yawn = True

        # gaze detection
        left_gaze_ratio = self.get_gaze_ratio(
            [landmarks.part(i) for i in range(36, 42)])
        right_gaze_ratio = self.get_gaze_ratio(
            [landmarks.part(i) for i in range(42, 48)])
        gaze_ratio = (right_gaze_ratio + left_gaze_ratio) / 2

        if gaze_ratio <= 0.75:
            gaze = 'RIGHT'
        elif 0.75 < gaze_ratio < 1.3:
            gaze = 'CENTER'
        else:
            gaze = 'LEFT'

        # head pose
        shape0 = np.array(face_utils.shape_to_np(landmarks))
        image_points = np.array(
            [
                (shape0[33, :]),  # Nose tip
                (shape0[8, :]),  # Chin
                (shape0[36, :]),  # Left eye left corner
                (shape0[45, :]),  # Right eye right corner
                (shape0[48, :]),  # Left Mouth corner
                (shape0[54, :])  # Right mouth corner
            ],
            dtype="double")

        model_points = np.array([
            (0.0, 0.0, 0.0),  # Nose tip
            (0.0, -330.0, -65.0),  # Chin
            (-225.0, 170.0, -135.0),  # Left eye left corner
            (225.0, 170.0, -135.0),  # Right eye right corne
            (-150.0, -150.0, -125.0),  # Left Mouth corner
            (150.0, -150.0, -125.0)  # Right mouth corner                     
        ])

        focal_length = 640
        center = (320, 180)
        camera_matrix = np.array([[focal_length, 0, center[0]],
                                  [0, focal_length, center[1]], [0, 0, 1]],
                                 dtype="double")

        # print ("Camera Matrix :\n {0}".format(camera_matrix))
        dist_coeffs = np.zeros((4, 1))  # Assuming no lens distortion
        (success, rotation_vector,
         translation_vector) = cv.solvePnP(model_points,
                                           image_points,
                                           camera_matrix,
                                           dist_coeffs,
                                           flags=cv.SOLVEPNP_ITERATIVE)
        # print ("Rotation Vector:\n {0}".format(rotation_vector))
        # print ("Translation Vector:\n {0}".format(translation_vector))

        (nose_end_point2D,
         jacobian) = cv.projectPoints(np.array([(0.0, 0.0, 1000.0)]),
                                      rotation_vector, translation_vector,
                                      camera_matrix, dist_coeffs)
        p1 = (int(image_points[0][0]), int(image_points[0][1]))
        p2 = (int(nose_end_point2D[0][0][0]), int(nose_end_point2D[0][0][1]))
        # print(str(p2[0] - p1[0]), str(p2[1] - p1[1]))
        # axis = np.float32([[500,0,0],
        #                   [0,500,0],
        #                   [0,0,500]])
        # imgpts, jac = cv.projectPoints(axis, rotation_vector, translation_vector, camera_matrix, dist_coeffs)
        # modelpts, jac2 = cv.projectPoints(model_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs)
        rvec_matrix = cv.Rodrigues(rotation_vector)[0]

        proj_matrix = np.hstack((rvec_matrix, translation_vector))
        eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6]

        pitch, yaw, roll = [math.radians(_) for _ in eulerAngles]

        pitch = math.degrees(math.asin(math.sin(pitch)))
        roll = -math.degrees(math.asin(math.sin(roll)))
        yaw = math.degrees(math.asin(math.sin(yaw)))

        # print(pitch, roll, yaw)

        # ''' x & y rotation '''
        # v_x = p2[0] - p1[0]
        # v_y = p2[1] - p1[1]

        # area = (shape0[45, 0] - shape0[36, 0]) * (shape0[8, 1] - (shape0[45, 1] + shape0[36, 1]) / 2)
        # area = math.sqrt(area) if area > 0 else 0
        # length = 1000 * area / 200

        # if length**2 - v_x**2 - v_y**2 <= 0:
        #     v_x = 0
        #     v_y = 0
        # h = math.sqrt(length**2 - v_x**2 - v_y**2)
        # theta_x = math.degrees(math.atan2(h, v_x)) - 90.0
        # theta_y = math.degrees(math.atan2(h, v_y)) - 90.0

        # theta_x = (theta_x / 3.5) ** 2 * 3.5 if theta_x > 0 else -(theta_x / 3.5) ** 2 * 3.5
        # theta_y = (theta_y / 3) ** 2 * 3 if theta_y > 0 else -(theta_y / 3) ** 2 * 3

        # print('angle:', theta_x, theta_y)

        return drowsiness, yawn, gaze, [p1, p2], [yaw, pitch * 4]