Exemple #1
0
def draw_circles(storage, output):
    circles = np.asarray(storage)
    print len(circles), 'circles found'
    for circle in circles:
        Radius, x, y = int(circle[0][2]), int(circle[0][0]), int(circle[0][1])
        cv2.Circle(output, (x, y), 1, cv2.RGB(0, 255, 0), -1, 8, 0)
        cv2.Circle(output, (x, y), Radius, cv2.RGB(255, 0, 0), 3, 8, 0)
Exemple #2
0
    def draw_phase(self, frame, phase):
        x, y, w, h = self.metrics
        c = self.get_colour()

        x -= int(Annotator.PULSE_SIZE[1] * 1.5)
        y -= Annotator.PULSE_SIZE[1]

        if (phase % (2.0 * numpy.pi)) < Annotator.PULSE_PHASE:
            radius = Annotator.PULSE_SIZE[1]
        else:
            radius = Annotator.PULSE_SIZE[0]

        cv.Circle(frame, (x, y), radius + Annotator.BORDER, c[1], -1)
        cv.Circle(frame, (x, y), radius, c[0], -1)
def getIris(frame):
	iris = []
	copyImg = cv.CloneImage(frame)
	resImg = cv.CloneImage(frame)
	grayImg = cv.CreateImage(cv.GetSize(frame), 8, 1)
	mask = cv.CreateImage(cv.GetSize(frame), 8, 1)
	storage = cv.CreateMat(frame.width, 1, cv.CV_32FC3)
	cv.CvtColor(frame,grayImg,cv.CV_BGR2GRAY)
	cv.Canny(grayImg, grayImg, 5, 70, 3)
	cv.Smooth(grayImg,grayImg,cv.CV_GAUSSIAN, 7, 7)
	circles = getCircles(grayImg)
	iris.append(resImg)
	for circle in circles:
		rad = int(circle[0][2])
		global radius
		radius = rad
		cv.Circle(mask, centroid, rad, cv.CV_RGB(255,255,255), cv.CV_FILLED)
		cv.Not(mask,mask)
		cv.Sub(frame,copyImg,resImg,mask)
		x = int(centroid[0] - rad)
		y = int(centroid[1] - rad)
		w = int(rad * 2)
		h = w
		cv.SetImageROI(resImg, (x,y,w,h))
		cropImg = cv.CreateImage((w,h), 8, 3)
		cv.Copy(resImg,cropImg)
		cv.ResetImageROI(resImg)
		return(cropImg)
	return (resImg)
def show_keypoints(data):
    """ paint and show images with keypoints"""
    for i in range(len(data)):
        try:
            if data[i].facedata:
                for j in range(len(data[i].facedata)):
                    nbr_keypoints = len(data[i].facedata[j].keypoints)
                    print('%d Features found in file %s' %
                          (nbr_keypoints, data[i].filename))
                    tmpImage = cv.CloneMat(data[i].facedata[j].face)
                    for k in range(nbr_keypoints):
                        if parameter.description_method == 'sift':
                            size = int(data[i].facedata[j].keypoints[k].size)
                        elif parameter.description_method == 'surf':
                            size = int(
                                data[i].facedata[j].keypoints[k].size) / 2
                        cv.Circle(
                            tmpImage,
                            (int(data[i].facedata[j].keypoints[k].pt[0]),
                             int(data[i].facedata[j].keypoints[k].pt[1])),
                            size, 255)
                    show_images(tmpImage)
        except:
            logging.error(
                'Error showing keypoints - Maybe no Face in File %s (tools.py)'
                % data[i].filename)
  def show_shapes(shapes):
    """ Function to show all of the shapes which are passed to it
    """
    cv.NamedWindow("Shape Model", cv.CV_WINDOW_AUTOSIZE)
    # Get size for the window
    max_x = int(max([pt.x for shape in shapes for pt in shape.pts]))
    max_y = int(max([pt.y for shape in shapes for pt in shape.pts]))
    min_x = int(min([pt.x for shape in shapes for pt in shape.pts]))
    min_y = int(min([pt.y for shape in shapes for pt in shape.pts]))

    i = cv.CreateImage((max_x-min_x+20, max_y-min_y+20), cv.IPL_DEPTH_8U, 3)
    cv.Set(i, (0, 0, 0))
    for shape in shapes:
      r = randint(0, 255)
      g = randint(0, 255)
      b = randint(0, 255)
      #r = 0
      #g = 0
      #b = 0
      for pt_num, pt in enumerate(shape.pts):
        # Draw normals
        #norm = shape.get_normal_to_point(pt_num)
        #cv.Line(i,(pt.x-min_x,pt.y-min_y), \
        #    (norm[0]*10 + pt.x-min_x, norm[1]*10 + pt.y-min_y), (r, g, b))
        cv.Circle(i, (int(pt.x-min_x), int(pt.y-min_y)), 2, (r, g, b), -1)
    cv.ShowImage("Shape Model",i)
 def draw_model_fitter(f):
   cv.NamedWindow("Model Fitter", cv.CV_WINDOW_AUTOSIZE)
   # Copy image
   i = cv.CreateImage(cv.GetSize(f.image), f.image.depth, 3)
   cv.Copy(f.image, i)
   for pt_num, pt in enumerate(f.shape.pts):
     # Draw normals
     cv.Circle(i, (int(pt.x), int(pt.y)), 2, (0,0,0), -1)
   cv.ShowImage("Shape Model",i)
   cv.WaitKey()
Exemple #7
0
    def draw_y_by_t(self):
        width = 700
        height = 700

        canvas = np.array((300, 300), np.uint8)

        i = 0
        for pos in positions[-self.window_sz:]:
            x = int(width * (i + 1) / (self.window_sz + 1))
            y = pos[1]

            cv2.Circle(canvas, pos, (120, 150, 200), 6)

        return canvas
Exemple #8
0
    def run(self):
        while True:
            img = self.capture.read()

            #blur the source image to reduce color noise
            cv2.blur(img, img, 3)

            #convert the image to hsv(Hue, Saturation, Value) so its
            #easier to determine the color to track(hue)
            hsv_img = cv2.CreateImage(cv2.GetSize(img), 8, 3)
            cv2.CvtColor(img, hsv_img, cv2.CV_BGR2HSV)

            #limit all pixels that don't match our criteria, in this case we are
            #looking for purple but if you want you can adjust the first value in
            #both turples which is the hue range(120,140).  OpenCV uses 0-180 as
            #a hue range for the HSV color model
            greenLower = (20, 190, 165)
            greenUpper = (30, 225, 220)
            thresholded_img = cv2.CreateImage(cv2.GetSize(hsv_img), 8, 1)
            cv2.InRangeS(hsv_img, greenLower, greenUpper, thresholded_img)

            #determine the objects moments and check that the area is large
            #enough to be our object
            moments = cv2.Moments(thresholded_img, 0)
            area = cv2.GetCentralMoment(moments, 0, 0)

            #there can be noise in the video so ignore objects with small areas
            if (area > 100000):
                #determine the x and y coordinates of the center of the object
                #we are tracking by dividing the 1, 0 and 0, 1 moments by the area
                x = cv2.GetSpatialMoment(moments, 1, 0) / area
                y = cv2.GetSpatialMoment(moments, 0, 1) / area

                #print 'x: ' + str(x) + ' y: ' + str(y) + ' area: ' + str(area)

                #create an overlay to mark the center of the tracked object
                overlay = cv2.CreateImage(cv2.GetSize(img), 8, 3)

                cv2.Circle(overlay, (x, y), 2, (255, 255, 255), 20)
                cv2.Add(img, overlay, img)
                #add the thresholded image back to the img so we can see what was
                #left after it was applied
                cv2.Merge(thresholded_img, None, None, None, img)

            #display the image
            cv2.ShowImage(color_tracker_window, img)

            if cv2.WaitKey(10) == 27:
                break
Exemple #9
0
    def run(self):
        #initiate font
        font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 3, 8)
        # instantiate images
        hsv_img = cv.CreateImage(cv.GetSize(cv.QueryFrame(self.capture)), 8, 3)
        threshold_img1 = cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
        threshold_img1a = cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
        threshold_img2 = cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
        i = 0
        writer = cv.CreateVideoWriter('angle_tracking.avi', cv.CV_FOURCC('M', 'J', 'P', 'G'), 30, cv.GetSize(hsv_img), 1)

        while True:
            # capture the image from the cam
            img = cv.QueryFrame(self.capture)

            # convert the image to HSV
            cv.CvtColor(img, hsv_img, cv.CV_BGR2HSV)

            # threshold the image to isolate two colors
            cv.InRangeS(hsv_img, (165, 145, 100), (250, 210, 160), threshold_img1)  # red
            cv.InRangeS(hsv_img, (0, 145, 100), (10, 210, 160), threshold_img1a)  # red again
            cv.Add(threshold_img1, threshold_img1a, threshold_img1)  # this is combining the two limits for red
            cv.InRangeS(hsv_img, (105, 180, 40), (120, 260, 100), threshold_img2)  # blue

            # determine the moments of the two objects
            threshold_img1 = cv.GetMat(threshold_img1)
            threshold_img2 = cv.GetMat(threshold_img2)
            moments1 = cv.Moments(threshold_img1, 0)
            moments2 = cv.Moments(threshold_img2, 0)
            area1 = cv.GetCentralMoment(moments1, 0, 0)
            area2 = cv.GetCentralMoment(moments2, 0, 0)

            # initialize x and y
            x1, y1, x2, y2 = (1, 2, 3, 4)
            coord_list = [x1, y1, x2, y2]
            for x in coord_list:
                x = 0

            # there can be noise in the video so ignore objects with small areas
            if (area1 > 200000):
                # x and y coordinates of the center of the object is found by dividing the 1,0 and 0,1 moments by the area
                x1 = int(cv.GetSpatialMoment(moments1, 1, 0) / area1)
                y1 = int(cv.GetSpatialMoment(moments1, 0, 1) / area1)

            # draw circle
            cv.Circle(img, (x1, y1), 2, (0, 255, 0), 20)

            # write x and y position
            cv.PutText(img, str(x1) +', '+str(y1), (x1, y1 + 20), font, 255)  # Draw the text

            if (area2 > 100000):
                # x and y coordinates of the center of the object is found by dividing the 1,0 and 0,1 moments by the area
                x2 = int(cv.GetSpatialMoment(moments2, 1, 0) / area2)
                y2 = int(cv.GetSpatialMoment(moments2, 0, 1) / area2)

                # draw circle
                cv.Circle(img, (x2, y2), 2, (0, 255, 0), 20)

            cv.PutText(img, str(x2) +', '+str(y2), (x2, y2 + 20), font, 255)  # Draw the text
            cv.Line(img, (x1, y1), (x2, y2), (0, 255, 0), 4, cv.CV_AA)
            # draw line and angle
            cv.Line(img, (x1, y1), (cv.GetSize(img)[0], y1), (100, 100, 100, 100), 4, cv.CV_AA)
            x1 = float(x1)
            y1 = float(y1)
            x2 = float(x2)
            y2 = float(y2)
            angle = int(math.atan((y1 - y2) / (x2 - x1)) * 180 / math.pi)
            cv.PutText(img, str(angle), (int(x1) + 50, (int(y2) + int(y1)) / 2), font, 255)

            # cv.WriteFrame(writer,img)

            # display frames to users
            cv.ShowImage('Target', img)
            cv.ShowImage('Threshold1', threshold_img1)
            cv.ShowImage('Threshold2', threshold_img2)
            cv.ShowImage('hsv', hsv_img)
            # Listen for ESC or ENTER key
            c = cv.WaitKey(7) % 0x100
            if c == 27 or c == 10:
                break
            cv.DestroyAllWindows()
    def process_image(self, slider_pos):
        global cimg, source_image1, ellipse_size, maxf, maxs, eoc, lastcx,lastcy,lastr
        """
        This function finds contours, draws them and their approximation by ellipses.
        """
        stor = cv.CreateMemStorage()

        # Create the destination images
        cimg = cv.CloneImage(self.source_image)
        cv.Zero(cimg)
        image02 = cv.CloneImage(self.source_image)
        cv.Zero(image02)
        image04 = cv.CreateImage(cv.GetSize(self.source_image), cv.IPL_DEPTH_8U, 3)
        cv.Zero(image04)

        # Threshold the source image. This needful for cv.FindContours().
        cv.Threshold(self.source_image, image02, slider_pos, 255, cv.CV_THRESH_BINARY)

        # Find all contours.
        cont = cv.FindContours(image02,
            stor,
            cv.CV_RETR_LIST,
            cv.CV_CHAIN_APPROX_NONE,
            (0, 0))

        maxf = 0
        maxs = 0
        size1 = 0

        for c in contour_iterator(cont):
            if len(c) > ellipse_size:
                PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
                for (i, (x, y)) in enumerate(c):
                    PointArray2D32f[0, i] = (x, y)


                # Draw the current contour in gray
                gray = cv.CV_RGB(100, 100, 100)
                cv.DrawContours(image04, c, gray, gray,0,1,8,(0,0))

                if iter == 0:
                    strng = segF + '/' + 'contour1.png'
                    cv.SaveImage(strng,image04)
                color = (255,255,255)

                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)

                # Convert ellipse data from float to integer representation.
                center = (cv.Round(center[0]), cv.Round(center[1]))
                size = (cv.Round(size[0] * 0.5), cv.Round(size[1] * 0.5))

                if iter == 1:
                    if size[0] > size[1]:
                        size2 = size[0]
                    else:
                        size2 = size[1]

                    if size2 > size1:
                        size1 = size2
                        size3 = size

                # Fits ellipse to current contour.
                if eoc == 0 and iter == 2:
                    rand_val = abs((lastr - ((size[0]+size[1])/2)))
                    if rand_val > 20 and float(max(size[0],size[1]))/float(min(size[0],size[1])) < 1.5:
                        lastcx = center[0]
                        lastcy = center[1]
                        lastr = (size[0]+size[1])/2

                    if rand_val > 20 and float(max(size[0],size[1]))/float(min(size[0],size[1])) < 1.4:
                        cv.Ellipse(cimg, center, size,
                                  angle, 0, 360,
                                  color,2, cv.CV_AA, 0)
                        cv.Ellipse(source_image1, center, size,
                                  angle, 0, 360,
                                  color,2, cv.CV_AA, 0)

                elif eoc == 1 and iter == 2:
                    (int,cntr,rad) = cv.MinEnclosingCircle(PointArray2D32f)
                    cntr = (cv.Round(cntr[0]), cv.Round(cntr[1]))
                    rad = (cv.Round(rad))
                    if maxf == 0 and maxs == 0:
                        cv.Circle(cimg, cntr, rad, color, 1, cv.CV_AA, shift=0)
                        cv.Circle(source_image1, cntr, rad, color, 2, cv.CV_AA, shift=0)
                        maxf = rad
                    elif (maxf > 0 and maxs == 0) and abs(rad - maxf) > 30:
                        cv.Circle(cimg, cntr, rad, color, 2, cv.CV_AA, shift=0)
                        cv.Circle(source_image1, cntr, rad, color, 2, cv.CV_AA, shift=0)
                        maxs = len(c)
        if iter == 1:
            temp3 = 2*abs(size3[1] - size3[0])
            if (temp3 > 40):
                eoc = 1
Exemple #11
0
feat=cv.goodFeaturesToTrack(prev_gray,
                            mask=None,
                            **shi_param)
mask=np.zeros_like(frame)
while(cap.isOpened()):
    ret, frame=cv.read()
    gray_frame=cv.cvtColor(frame,cv.COLOR_BGR2GRAY)
    next, status, error = cv.calcOpticalFlowPyrLK(gray_frame,feat,mask=None, **lucas_kanade_param)
    good_old=prev[status==1]
    good_new=next[status==1]
    for i,(new,old) in enumerate(zip(good_new,good_new)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask=cv.line(mask,
                     (a,b),
                     (c,d),
                     color,
                     2)
        frame = cv.Circle(frame,
                          (a,b),
                          (c,d),
                          3,
                          color,
                          -1)
    output=cv.add(frame,mask)
    prev_gray=gray.copy()
    cv.imshow("optical flow",output)
    if cv.waitKey(1) & 0xFF == ord("q"):
        break
cap.release()
cv.destroyAllWindows()
import copy
import numpy as np 
import cv2
int R = 53
int snr = 5200
imgIn = cv2.imread("original.jpg",0)
    // it needs to process even image only
    //Rect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);
roi = imgIn[0:(imgIn.shape[0] & -2), 0:(imgIn.shape[1] & -2)]
    //Hw calculation (start)
    //calcPSF(h, roi.shape, R);
outputImg = h,filterSize = roi
     //Mat h(filterSize, CV_32F, Scalar(0));
center = (filterSize.shape[1] / 2, filterSize.shape[0] / 2)
cv2.Circle(h, center, R, color = 255, thickness=1, lineType=8, shift=0)
summa = np.sum(h);
outputImg = h / summa[0];
#-----------------------------------------------------------------------------------------------------
#calcWnrFilter(h, Hw, 1.0 / double(snr));
input_h_PSF = h
output_G = Hw
nsr = 1.0/float(snr)   
#---------------------------------------------------------------
#fftshift(input_h_PSF, h_PSF_shifted);
inputImg = input_h_PSF
outputImg = inputImg;
cx = outputImg.shape[0] / 2
cy = outputImg.shape[1] / 2
q0 = outputImg[0:cx, 0:cy]         # Top-Left - Create a ROI per quadrant
q1 = outputImg[cx:cx+cx, 0:cy]     # Top-Right
q2 = outputImg[0:cx, cy:cy+cy]     # Bottom-Left
Exemple #13
0
def CamGui():
    capture = cv.VideoCapture(0)
    width = int(capture.get(cv.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv.CAP_PROP_FRAME_HEIGHT))
    prev_gray = cv.CreateImage((width, height), 8, 1)
    gray = cv.CreateImage((width, height), 8, 1)

    # Will hold the pyr frame at t-1
    prevPyr = cv.CreateImage((height / 3, width + 8), 8, cv.CV_8UC1)
    currPyr = cv.CreateImage((height / 3, width + 8),
                             8, cv.CV_8UC1)  # idem at t

    max_count = 500
    qLevel = 0.01
    minDist = 10
    prev_points = []  # Points at t-1
    curr_points = []  # Points at t
    lines = []  # To keep all the lines overtime

    while True:
        frame = cv.QueryFrame(capture)
        cv.CvtColor(frame, gray, cv.CV_BGR2GRAY)  # Convert to gray
        output = cv.CloneImage(frame)

        prev_points = cv.GoodFeaturesToTrack(
            gray, None, None, max_count, qLevel, minDist)
        curr_points, status, err = cv.CalcOpticalFlowPyrLK(
            prev_gray, gray, prevPyr, currPyr, prev_points, (10, 10), 3, (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03), 0)

        # If points status are ok and distance not negligible keep the point
        k = 0
        for i in range(len(curr_points)):
            nb = abs(int(prev_points[i][0]) - int(curr_points[i][0])) + \
                abs(int(prev_points[i][1]) - int(curr_points[i][1]))
            if status[i] and nb > 2:
                prev_points[k] = prev_points[i]
                curr_points[k] = curr_points[i]
                k += 1

        prev_points = prev_points[:k]
        curr_points = curr_points[:k]
        # At the end only interesting points are kept

        # Draw all the previously kept lines otherwise they would be lost the next frame
        for (pt1, pt2) in lines:
            cv.Line(frame, pt1, pt2, (255, 255, 255))

        # Draw the lines between each points at t-1 and t
        for prevpoint, point in zip(prev_points, curr_points):
            prevpoint = (int(prevpoint[0]), int(prevpoint[1]))
            cv.Circle(frame, prevpoint, 15, 0)
            point = (int(point[0]), int(point[1]))
            cv.Circle(frame, point, 3, 255)
            cv.Line(frame, prevpoint, point, (255, 255, 255))
            # Append current lines to the lines list
            lines.append((prevpoint, point))

        cv.Copy(gray, prev_gray)  # Put the current frame prev_gray
        prev_points = curr_points

        cv.ShowImage("The Video", frame)
        #cv.WriteFrame(writer, frame)
        c = cv.WaitKey(1)
        if c == 27:  # Esc on Windows
            break
def draw_circles(storage, output):
    circles = np.asarray(storage)
    for circle in circles:
        Radius, x, y = int(circle[0][3]), int(circle[0][0]), int(circle[0][4])
        cv2.Circle(output, (x, y), 1, cv2.RGB(0, 255, 0), -1, 8, 0)
        cv2.Circle(output, (x, y), Radius, cv2.RGB(255, 0, 0), 3, 8, 0)