Exemple #1
0
 def detectKp(self, img, mask):
    
    if self.equalnum == True:
       # Star detector
       star = cv2.StarDetector(16, 0, 10, 8, 5)         
       best_kp = star.detect(img)  
       if len(best_kp) >= self.numpatch:
          best_kp = random.sample(best_kp,self.numpatch)         
    else:
       star = cv2.StarDetector(30, 0, 10, 8, 5)    
       best_kp = star.detect(img) 
       
    #remove keypoints from the border of the image to be able to use the binary descriptors
    border = 40 #size of the border
    height, width = img.shape[:2]
    
    n = len(best_kp)
    best_kp_no_border = []
       
    for i in range(0,n):
       kp = best_kp[i]
       if kp.pt[0] < border or kp.pt[0] > (width - border) or kp.pt[1] < border or kp.pt[1] > (height - border):
          True
       else:
          best_kp_no_border.append(kp)
    best_kp = best_kp_no_border
       
    # draw the keypoints
    #img3 = cv2.drawKeypoints(img,best_kp_no_border, color=(255,0,0))
    #cv2.imshow('image2',img3)
    #cv2.waitKey(0)
    #cv2.destroyAllWindows()  
    
    return best_kp 
Exemple #2
0
 def make_detector(self, dparams):
     detector = None
     if dparams['detector'] == 'SIFT':
         max_features = int(dparams['sift-max-features'])
         detector = cv2.SIFT(nfeatures=max_features)
     elif dparams['detector'] == 'SURF':
         threshold = float(dparams['surf-hessian-threshold'])
         nOctaves = int(dparams['surf-noctaves'])
         detector = cv2.SURF(hessianThreshold=threshold, nOctaves=nOctaves)
     elif dparams['detector'] == 'ORB':
         max_features = int(dparams['orb-max-features'])
         grid_size = int(dparams['grid-detect'])
         cells = grid_size * grid_size
         max_cell_features = int(max_features / cells)
         detector = cv2.ORB_create(max_cell_features)
     elif dparams['detector'] == 'Star':
         maxSize = int(dparams['star-max-size'])
         responseThreshold = int(dparams['star-response-threshold'])
         lineThresholdProjected = int(
             dparams['star-line-threshold-projected'])
         lineThresholdBinarized = int(
             dparams['star-line-threshold-binarized'])
         suppressNonmaxSize = int(dparams['star-suppress-nonmax-size'])
         detector = cv2.StarDetector(maxSize, responseThreshold,
                                     lineThresholdProjected,
                                     lineThresholdBinarized,
                                     suppressNonmaxSize)
     return detector
Exemple #3
0
 def updateDetector(self, args):
     maxSize = params['maxSize']
     responseThreshold = cv2.getTrackbarPos("Response threshold",
                                             processed_win)
     lineThresholdProjected = cv2.getTrackbarPos("Projected line threshold",
                                                 processed_win)
     lineThresholdBinarized = cv2.getTrackbarPos("Binarized line threshold",
                                                 processed_win)
     self.detector = cv2.StarDetector(maxSize, responseThreshold,
                             lineThresholdProjected, lineThresholdBinarized) 
Exemple #4
0
def brief_descriptor_generator(data, nfeatures):
    """
    :param data: numpy array grayscale image for getting histo or local descriptors for an images
    :param feature_point_quantity: MAX feature point quantity
    :return: keypoint_list, descriptor_list
    """

    # nfeatures can not be controlled in STAR
    # Initiate STAR detector
    star = cv2.StarDetector()
    # Initiate BRIEF extractor
    brief = cv2.DescriptorExtractor_create("BRIEF")
    # find the keypoints with STAR
    kp = star.detect(data)
    # compute the descriptors with BRIEF
    kp, des = brief.compute(data, kp)
    
    return kp, des
Exemple #5
0
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('demo.png', 0)

# Initiate STAR detector
#star = cv2.FeatureDetector_create("STAR")
maxSize = 16
star = cv2.StarDetector()
#for opencv3
#star = cv2.xfeatures2D.StarDetector_create()
#star.detect(img)

# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")

# find the keypoints with STAR
kp = star.detect(img)
#kp = star.detect(img,None)

# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)

print brief.getInt('bytes')
print des.shape

img2 = cv2.drawKeypoints(img, kp, None, color=(0, 255, 0), flags=0)
plt.imshow(img2), plt.show()
cv2.imwrite("demo_brief" + '.png', img2)
Exemple #6
0
    def __init__(self, choice=1):
        """ This constructor determines OpenCV version being used and accordingly initialises 
			feature detector and descriptors. User defined input choice determines type of detecor and descriptor used for stitching two frames together.

			Args:
				self	(Stitcher)	:	Reference to the current Object
				choice	(int)		:	Choice of detector and descriptor

			"""

        # Determine OpenCV version
        ver = int(cv2.__version__.split('.')[0])
        if ver == 3:
            self.version3 = True
        else:
            self.version3 = False

        self.choice = choice

        # Initialize feature detectors and Descriptors based on choice parameter
        #Menu
        # Choice 	Feature detector 	Feature Descriptor 		Note
        #    1			SIFT 				SIFT 				-
        #    2 			SURF 				SURF 				Without Upright
        #	 3			SURF 				SURF 				With Upright
        # 	 4 			STAR 				BRIEF 				-
        # 	 5 			ORB 				ORB 				-

        if self.choice == 1:
            print 'Using SIFT...'
            if self.version3:
                self.sift = cv2.xfeatures2d.SIFT_create()
            else:
                self.detector = cv2.FeatureDetector_create("SIFT")
                self.extractor = cv2.DescriptorExtractor_create("SIFT")

        if self.choice == 2:
            print 'Using SURF without Upright...'
            if self.version3:
                self.surf = cv2.xfeatures2d.SURF_create(400)
            else:
                self.detector = cv2.FeatureDetector_create("SURF")
                self.extractor = cv2.DescriptorExtractor_create("SURF")

        if self.choice == 3:
            print 'Using SURF with Upright...'
            if self.version3:
                self.surf = cv2.xfeatures2d.SURF_create(400)
                self.surf.setUpright(True)
            else:
                self.detector = cv2.SURF(hessianThreshold=400, upright=1)
                self.extractor = cv2.DescriptorExtractor_create("SURF")

        if self.choice == 4:
            print 'Using STAR detector with BRIEF descriptor...'
            if self.version3:
                self.star = cv2.xfeatures2d.StarDetector_create()
                self.brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()

            else:
                self.detector = cv2.StarDetector()
                self.extractor = cv2.DescriptorExtractor_create("BRIEF")

        if self.choice == 5:
            print 'Using ORB...'
            if self.version3:
                self.orb = cv2.ORB_create()
            else:
                self.orb = cv2.ORB()

        return
Exemple #7
0
def get_feature_detector_descriptor_extractor(
        feature_detector_name=str(),
        descriptor_extractor_name=None,
        feature_detector_params=None,
        descriptor_extractor_params=None):
    """
    :param feature_detector_name:
    :param descriptor_extractor_name:
    :param feature_detector_params: dict(nfeatures=1000) for ORB
    :param descriptor_extractor_params:
    :return:
    """
    assert len(feature_detector_name) != 0
    if feature_detector_params == None:
        feature_detector_params = dict()
    if descriptor_extractor_params == None:
        descriptor_extractor_params = dict()

    feature_detector_name = feature_detector_name.upper()

    normType = cv2.NORM_L2

    if feature_detector_name == "ORB" or feature_detector_name == "BRIEF" or feature_detector_name == "BRISK":
        normType = cv2.NORM_HAMMING

    feature_detector = descriptor_extractor = None
    if feature_detector_name == "ORB":
        assert descriptor_extractor_name is None and len(
            descriptor_extractor_params) == 0
        if imutils.is_cv2():
            feature_detector = descriptor_extractor = cv2.ORB(
                **feature_detector_params)
        else:
            feature_detector = descriptor_extractor = cv2.ORB_create(
                **feature_detector_params)

    elif feature_detector_name == "BRIEF":
        assert descriptor_extractor_name is None and len(
            descriptor_extractor_params) == 0
        if imutils.is_cv2():
            feature_detector = cv2.StarDetector(**feature_detector_params)
            #descriptor_extractor = cv2.BriefDescriptorExtractor(**descriptor_extractor_params) # seems not working
            descriptor_extractor = cv2.DescriptorExtractor_create("BRIEF")
        else:
            feature_detector = cv2.xfeatures2d.StarDetector_create(
                **feature_detector_params)
            descriptor_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create(
                **descriptor_extractor_params)

    elif feature_detector_name == "BRISK":
        assert descriptor_extractor_name is None and len(
            descriptor_extractor_params) == 0
        if imutils.is_cv2():
            feature_detector = descriptor_extractor = cv2.BRISK(
                **feature_detector_params)
        else:
            feature_detector = descriptor_extractor = cv2.BRISK_create(
                **feature_detector_params)

    elif feature_detector_name == "SURF":
        assert descriptor_extractor_name is None and len(
            descriptor_extractor_params) == 0
        if imutils.is_cv2():
            feature_detector = descriptor_extractor = cv2.SURF(
                **feature_detector_params)
        else:
            feature_detector = descriptor_extractor = cv2.xfeatures2d.SURF_create(
                **feature_detector_params)

    elif feature_detector_params == "SIFT":
        assert descriptor_extractor_name is None and len(
            descriptor_extractor_params) == 0
        if imutils.is_cv2():
            feature_detector = descriptor_extractor = cv2.SIFT(
                **feature_detector_params)
        else:
            feature_detector = descriptor_extractor = cv2.xfeatures2d.SIFT_create(
                **feature_detector_params)

    else:
        print(
            "Seems we have not predefined the target feature_detector and descriptor_extractor"
        )

    return feature_detector, descriptor_extractor, normType
Exemple #8
0
    def __init__(self, method, point, color):

        self.cv_wait = params['rate']

        self.gamma = params['gamma']/100.0
        cv2.createTrackbar("gamma", processed_win, params['gamma'],
                           params['gamma_max'], self.updateGamma)

        cv2.createTrackbar("threshold 1", edge_win, params['thresh1'],
                           params['thresh_max'], nothing)
        cv2.createTrackbar("threshold 2", edge_win, params['thresh2'],
                           params['thresh_max'], nothing)

        cv2.createTrackbar("blur", processed_win, params['blur'],
                           params['blur_max'], nothing)

        self.houghArgs = [params['rho'], params['theta'], params['threshold'],
                          params['minLineLength'], params['maxLineGap']]

        if method == 'edge':
           self.detectFunction = self.edgeDetect

        elif method == 'color':
            cv2.createTrackbar("radius", processed_win, params['radius'],
                               params['radius_max'], nothing)
            cv2.createTrackbar("open", processed_win, params['open'],
                               params['open_max'], nothing)
            self.detectFunction = self.colorDetect
            self.color = color
            if self.color is not None:
                print "Got picked color:", self.color

            if point is not None:
                self.point = point
            elif point is None and color is None:
                raise Exception("Not enough information given to object_finder.py")

        elif method == 'star':

            self.color = None 
            cv2.createTrackbar("radius", processed_win, params['radius'],
                               params['radius_max'], nothing)
            cv2.createTrackbar("open", processed_win, params['open'],
                               params['open_max'], nothing)
            cv2.createTrackbar("Response threshold", processed_win,
                                params['response'], params['response_max'],
                                self.updateDetector)
            cv2.createTrackbar("Projected line threshold", processed_win,
                                params['projected'], params['projected_max'],
                                self.updateDetector)
            cv2.createTrackbar("Binarized line threshold", processed_win,
                                params['binarized'], params['binarized_max'],
                                self.updateDetector)
            self.detector = cv2.StarDetector(params['maxSize'],
                                    params['response'],
                                    params['projected'],
                                    params['binarized']) 
            self.detectFunction = self.starDetect

        elif method == 'watershed':
            self.detectFunction = self.watershedDetect
            cv2.createTrackbar("blur", processed_win, params['blur'],
                               params['blur_max'], nothing)


        self.centroids = [] 
        self.axes = []
        #self.prev_axis = None
        self.prev_img = None
        self.processed = None
        self.canny = None