def takeImages(): Id = input("Enter Your Id: ") name = input("Enter Your Name: ") if (is_number(Id) and name.isalpha()): cam = cv2.videoCapture(0) harcascadePath = "haarcascade_default.xml" detector = cv2.cascadeClassifier(harcascadePath) sampleNum = 0 while (True): ret, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = detector.detectMultiScale(gray, 1.3, 5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (10, 159, 255), 2) sampleNum = sampleNum + 1 #saving the captured face in the dataset folder TrainingImage cv2.imwrite( "TrainingImage" + os.sep + name + "." + Id + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) cv2.imshow('frame', img) if cv2.waitKey(100) & 0xFF == ord('q'): break elif sampleNum > 100: break cam.release() cv2.destroyAllWindows() res = "Images Saved for ID : " + Id + " Name : " + name row = [Id, name] with open("StudentDetails" + os.sep + "StudentDetails.csv", 'a+') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() else: if (is_number(Id)): print("Enter Alphabetical Name") if (name.isalpha()): print("Enter Numeric ID")
def camer(): import cv2 # Load the cascade cascade_face = cv2.cascadeClassifier('haarcascade_default.xml') # To capture video from webcam. cap = cv2.captureVideo(0) while True: # Read the frame _, img = cap.read() # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect the faces faces = cascade_face.multiScale(gray, 1.3, 5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) # Draw the rectangle around each face for (a, b, c, d) in faces: cv2.rectangle(img, (a, b), (a + c, b + d), (10, 159, 255), 2) # Display cv2.imshow('Webcam Check', img) # Stop if escape key is pressed if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the captureVideo object cap.release() cv2.destroyAllWindows()
import cv2 face_cascade=cv2.cascadeClassifier("C:\\Users\\luvku\\CS 2019\\task0#sb (1)\\Task0.2\\Image Processing\\Images\\bird.jpg") img=cv2.imread("C:\\Users\\luvku\\CS 2019\\task0#sb (1)\\Task0.2\\Image Processing\\Images\\bird.jpg",1) gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) faces=face_cascade.detectMultiScale(gray_img,scaleFactor_=_1,minNeighbors=5) print(type(faces)) print(faces) for x,y,w,h in faces: img=cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3) cv2.imshow("bird",img) cv2.waitKey(0) cv2.destroyAllWindows()
## importing libraries import cv2 ## Load the cascade face_cascade = cv2.cascadeClassifier('haarcascade_frontalface_default.xml') ## Read the input image img = cv2.imread('test.jpg') ## Convert the image into grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ## Detect faces faces = face_cascade.detectMultiscale(gray, 1.1, 4) ## Draw rectangle around the face for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) ## Show the output cv2.imshow('output.jpg', img) cv2.waitkey()
import cv2 cap=cv2.videoCapture(0) face_cascade=cv2.cascadeClassifier("haarcascade_frontalface_alt.xml") while True: ret,frame=cap.read() gray_frame=cv2.cvtColour(frame,cv2.COLOUR_BGR2GRAY) if ret==False: continue face=face_cascade.detectMultiScale(gray_frame,1.3,5) print(faces) for(x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow("Video Frame",frame) key_pressed=cv2.waitkey(1) & 0xFF if key_pressed==ord('q'); break
import cv2 detect=cv2.cascadeClassifier("file.xml") imp_img=cv2.VideoCapture("roman.jpg") res,img=imp_img.read() gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) faces=detect.detectMultiSclae(gray,1.3,5) for(x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow("roman.jpg",img) cv2.waitKey(0) imp_img.release() cv2.destroyAllWindow()
def get_face_boundingbox(image): faces = cv2.detectMultiScale(image, cv2.cascadeClassifier()) return faces