Exemple #1
0
def create_hdr(directory):
    print("creating HDR image for " + directory + '...')
    imgs, speeds = read_images(directory)

    # align images
    aligner = cv2.createAlignMTB(max_bits=2, cut=True)
    aligner.process(imgs, imgs)

    result = np.zeros_like(imgs[0], dtype=np.float32)
    for c in range(3):
        # sample points
        samples = sample_points(imgs[:, :, c], num_locations=500)

        # solve for log exposure curve g
        g, _ = solve_log_exposure(samples, speeds, lmbda=50)

        result[:, :, c] = combine_images(imgs[:, :, :, c], speeds, g)

        plt.imsave(
            os.path.join('./output',
                         os.path.split(directory)[1] + '_radiance.png'),
            rgb2gray(result))

    # tone mapping
    method = 'bilateral'
    result = tone_mapping(result, method=method)

    plt.imsave(
        os.path.join('./output',
                     os.path.split(directory)[1] + '_' + method + '.png'),
        result)
Exemple #2
0
def process_photos(folders):
    psave = folders["psave"]
    ptmp = folders["ptmp"]
    pgal = folders["pgal"]

    foldername = folders["foldername"]

    save_folder = psave + "/" + foldername
    makedirs(save_folder)

    onlyfiles = [f for f in listdir(ptmp) if isfile(join(ptmp, f))]

    images = []
    times = np.array([], dtype=np.float32)
    logging.info("Loading images for HDR")
    for filename in onlyfiles:
        filesrc = ptmp + "/" + filename
        filedest = save_folder + "/" + filename
        shutil.move(filesrc, filedest)

        file_data = open(filedest, 'rb')
        tags = exifread.process_file(file_data)
        exposure = float(tags['EXIF ExposureTime'].values[0])

        im = cv2.imread(filedest)
        images.append(im)
        times = np.append(times, np.float32(exposure))

    logging.info("Align input images")
    align_MTB = cv2.createAlignMTB()
    align_MTB.process(images, images)

    logging.info('Obtain Camera Response Function (CRF)')
    calibrate_debevec = cv2.createCalibrateDebevec()
    response_debevec = calibrate_debevec.process(images, times)

    logging.info('Merge images into an HDR linear image')
    merge_debevec = cv2.createMergeDebevec()
    hdr_debevec = merge_debevec.process(images, times, response_debevec)

    logging.info('Save HDR image')
    save_file = pgal + "/" + foldername 
    cv2.imwrite(save_file + ".hdr", hdr_debevec)

    logging.info("Tonemaping using Drago's method ... ")
    tonemap_drago = cv2.createTonemapDrago(1.0, 0.7)
    ldr_drago = tonemap_drago.process(hdr_debevec)
    ldr_drago = 3 * ldr_drago
    cv2.imwrite(save_file + "_drago.jpg", ldr_drago * 255)
    
    logging.info("Tonemaping using Reinhard's method ... ")
    tonemap_reinhard = cv2.createTonemapReinhard(1.5, 0,0,0)
    ldr_reinhard = tonemap_reinhard.process(hdr_debevec)
    cv2.imwrite(save_file + "_reinhard.jpg", ldr_reinhard * 255)
    
    logging.info("Tonemaping using Mantiuk's method ... ")
    tonemap_mantiuk = cv2.createTonemapMantiuk(2.2,0.85, 1.2)
    ldr_mantiuk = tonemap_mantiuk.process(hdr_debevec)
    ldr_mantiuk = 3 * ldr_mantiuk
    cv2.imwrite(save_file + "_mantiuk.jpg", ldr_mantiuk * 255)
Exemple #3
0
def main(folder):
    """
	Reads and process the images given by the read_and_store_data function
	and creates a new hdr file
	
	"""
    images, times = read_and_store_data(folder)
    """
	Align the pictures using the brightest spots, it 
	doesn't matter the exposures are different
	"""
    logging.debug("Aligning pictures")
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)
    """
	Finds the camera response function
	"""
    logging.debug("Calculating Camera response function")
    calibrate = cv2.createCalibrateDebevec()
    response = calibrate.process(images, times)
    """
	Putting everything together into a single hdr image
	"""
    logging.debug("Merging images...")
    merge = cv2.createMergeDebevec()
    hdr = merge.process(images, times, response)
    """
	Saving the hdr file into the specified folder
	"""
    hdr_folder = os.path.join(cwd, "HDR")
    logging.debug("Saving HDR at {}....".format(hdr_folder))
    cv2.imwrite(hdr_folder + "/file2.hdr", hdr)
    logging.debug("Saved file")
Exemple #4
0
def align_images():
    """
  reason of doing this
  :return:
  """
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)
Exemple #5
0
def exposure_fusion(exposures):
    ##Mertens##
    # Align input images
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(exposures, exposures)
    merge_mertens = cv2.createMergeMertens()
    res_mertens = merge_mertens.process(exposures)
    res_mertens_8bit = np.clip(res_mertens * 255, 0, 255).astype('uint8')
    return res_mertens_8bit
Exemple #6
0
def align_images(images):
    """
    Converts all the images to median threshold bitmaps (MTB),  the MTBs can be aligned without requiring us to
    specify the exposure time.
    :return:
    """
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)
    return images
    def merge2HDR(self, input_path, output_path, exp_times, verbosity):
        """
        ***************************************************************
        Function to merge Debayered images into HDR images
        :param input_path: the debayered images path
        :param output_path: the output HDR path
        :param exp_times: the input exposure times in seconds
        :param verbosity: show individual file progress
        :return: <none>
        NOTE: Function uses Debevec's merging algorithm to merge
        exposures to HDR file.
        ***************************************************************
        """
        # global starting number of the HDR frames
        hdrnum = 0

        # list all files in the debayer folder
        filelist = [
            filename for dirpath, dirnames, filenames in os.walk(input_path)
            for filename in filenames if filename.endswith('.jpg')
        ]

        # check whether directory exists else create a directory
        if not os.path.exists(output_path):
            os.makedirs(output_path)

        # process debayer images to HDR images
        for i in range(0, len(filelist), len(exp_times)):
            exposures = []
            # read the exposures and append a list of exposures to be merged to HDR
            for j in range(i, i + 4):
                filename = os.path.join(input_path, filelist[j])
                ldr_image = cv2.imread(filename, cv2.IMREAD_COLOR)
                ldr_image = cv2.cvtColor(ldr_image, cv2.COLOR_BGR2RGB)
                exposures.append(ldr_image)

            # align the exposure list
            alignMTB = cv2.createAlignMTB()
            alignMTB.process(exposures, exposures)

            # obtain camera response function
            calibrateDebevec = cv2.createCalibrateDebevec()
            responseDebevec = calibrateDebevec.process(exposures, exp_times)

            # create HDR from camera response
            mergeDebevec = cv2.createMergeDebevec()
            hdr = mergeDebevec.process(exposures, exp_times, responseDebevec)

            # set output file name and write exr (we use a separate exr because OpenCV EXR is not compressed)
            outfilename = os.path.join(output_path,
                                       '{0:05d}.exr'.format(hdrnum))
            self.writeEXR(hdr, outfilename)
            if verbosity == 1:
                print('HDR file: {0} merged..'.format(outfilename))
            hdrnum += 1
        return
Exemple #8
0
def merge_image(images):
    #images=[cv2.imread(image) for image in images]
    alignmtb = cv2.createAlignMTB()
    alignmtb.process(images, images)
    mm = cv2.createMergeMertens()
    result_mertens = mm.process(images)
    res_mertens_8bit = np.clip(result_mertens * 255, 0, 255).astype('uint8')
    img_out = res_mertens_8bit

    return img_out
Exemple #9
0
def combine(img_stack):
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(img_stack, img_stack)
    #exposure_times = np.array([1/100, 1/160, 1/320, 1/500,1/800,1/1600], dtype=np.float32)
    #do HDR calculation
    # Merge exposures to HDR image
    merge_mertens = cv2.createMergeMertens()
    res_mertens = merge_mertens.process(img_stack)
    res_mertens_8bit = np.clip(res_mertens * 255, 0, 255).astype('uint8')
    ################################################################
    #imgBGR = cv2.cvtColor(res_mertens_8bit,cv2.COLOR_RGB2BGR)
    return res_mertens_8bit
def fusion_Image(dir):
    images = read_image(dir)
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)

    mergeMertens = cv2.createMergeMertens()
    exposureFusion = mergeMertens.process(images)

    print(type(exposureFusion))
    cv2.imshow('Fusion', exposureFusion)
    while True:
        k = cv2.waitKey(33)
        if k == 27:
            break
    cv2.destroyAllWindows()
Exemple #11
0
def expFusion(imList):
    """
    Computes the exposure fusion of a list of images with identical sizes.
    Cf. Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography.
    Tom Mertens, Jan Kautz and Frank Van Reeth In Computer Graphics Forum, 28 (1) 161 - 171, 2009
    @param imList:
    @type imList: list of ndarray
    @return:
    @rtype: ndarray
    """
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(imList, imList)

    mergeMertens = cv2.createMergeMertens()
    fusion = mergeMertens.process(imList)
    np.clip(fusion, 0.0, 1.0, out=fusion)
    return fusion * 255
def load_images(path, gray=True, align=False):
    imgs = []
    # Load images from the path with different focus
    valid_images = [".jpg", ".png", ".gif"]
    for f in os.listdir(path):
        ext = os.path.splitext(f)[1]
        if ext.lower() not in valid_images:
            continue
        if ext.lower() == ".gif":
            gif = Image.open((os.path.join(path, f)))
            imgs.append(np.array(gif.convert('RGB')))
        else:
            imgs.append(cv2.imread(os.path.join(path, f)))
    if align:
        alignMTB = cv2.createAlignMTB()
        alignMTB.process(imgs, imgs)
    images = tuple(imgs)
    if gray:
        images = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in images]
    return images
Exemple #13
0
def createHDR(images, timeDifference):
    times = np.array([1.0, timeDifference], dtype=np.float32)
    #try:
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)

    mergeMertens = cv2.createMergeMertens(10, 4, 8)
    hdrs = mergeMertens.process(images)

    #calibrateDebevec = cv2.createCalibrateDebevec()
    #responseDebevec = calibrateDebevec.process(images, times)

    #mergeDebevec = cv2.createMergeDebevec()
    #hdrDebevec = mergeDebevec.process(images, times, responseDebevec)

    #tonemapReinhard = cv2.createTonemapReinhard(1.5, 2.0,0,0)
    #ldrReinhard = tonemapReinhard.process(hdrDebevec)

    #return ldrReinhard
    return hdrs
Exemple #14
0
 def test_align(self):
     global images
     images_cv = images.copy()
     images_our = images.copy()
     print("Aligning images ... ")
     alignMTB = cv2.createAlignMTB()
     tStart = time.time()
     alignMTB.process(images, images_cv)
     tEnd = time.time()
     tOril = tEnd - tStart
     tStart = time.time()
     images_our = _align.process(images)
     tEnd = time.time()
     tOur = tEnd - tStart
     print("tOril:", tOril)
     print("tOur:", tOur)
     for i in range(len(images)):
         self.assertEqual(np.array_equal(images_cv[i], images_our[i]), True)
         self.assertEqual(images_cv[i].shape, images_our[i].shape)
     images = images_our
Exemple #15
0
def main():
    #读取多张曝光的图像
    images,times = readImagesAndTimes()

    #对齐图像
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)

    #恢复相机响应函数
    calibrateDebevec = cv2.createCalibrateDebevec()
    responseDebevec = calibrateDebevec.process(images, times)

    # 将多张图像融合成hdr
    mergeDebevec = cv2.createMergeDebevec()
    hdrDebevec = mergeDebevec.process(images, times, responseDebevec)
    # 保存融合结果,可用ps打开
    cv2.imwrite("hdrDebevec.hdr", hdrDebevec)

    # Tonemap using Drago's method to obtain 24-bit color image
    tonemapDrago = cv2.createTonemapDrago(1.0, 0.7)
    ldrDrago = tonemapDrago.process(hdrDebevec)
    ldrDrago = 3 * ldrDrago
    cv2.imwrite("ldr-Drago.jpg", ldrDrago * 255)

    # Tonemap using Durand's method obtain 24-bit color image
    tonemapDurand = cv2.createTonemapDurand(1.5,4,1.0,1,1)
    ldrDurand = tonemapDurand.process(hdrDebevec)
    ldrDurand = 3 * ldrDurand
    cv2.imwrite("ldr-Durand.jpg", ldrDurand * 255)

    # Tonemap using Reinhard's method to obtain 24-bit color image
    tonemapReinhard = cv2.createTonemapReinhard(1.5, 0,0,0)
    ldrReinhard = tonemapReinhard.process(hdrDebevec)
    cv2.imwrite("ldr-Reinhard.jpg", ldrReinhard * 255)

    # Tonemap using Mantiuk's method to obtain 24-bit color image
    tonemapMantiuk = cv2.createTonemapMantiuk(2.2,0.85, 1.2)
    ldrMantiuk = tonemapMantiuk.process(hdrDebevec)
    ldrMantiuk = 3 * ldrMantiuk
    cv2.imwrite("ldr-Mantiuk.jpg", ldrMantiuk * 255)
Exemple #16
0
def main():
    images, times = readImagesAndTimes()

    # Align input images
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)

    # Obtain Camera Response Function (CRF)
    calibrateDebevec = cv2.createCalibrateDebevec()
    responseDebevec = calibrateDebevec.process(images, times)

    # Merge images into an HDR linear image
    mergeDebevec = cv2.createMergeDebevec()
    hdrDebevec = mergeDebevec.process(images, times, responseDebevec)
    # Save HDR image.
    cv2.imwrite("hdrDebevec.hdr", hdrDebevec)

    # Tonemap using Drago's method to obtain 24-bit color image
    tonemapDrago = cv2.createTonemapDrago(1.0, 0.7)
    ldrDrago = tonemapDrago.process(hdrDebevec)
    ldrDrago = 3 * ldrDrago
    cv2.imwrite("ldr-Drago.jpg", ldrDrago * 255)
Exemple #17
0
def readImages(directory):
    images_name = []
    images = []
    images_r, images_g, images_b = [], [], []
    images_rgb = [images_r, images_g, images_b]
    for filename in os.listdir(directory):
        images_name.append(directory + '/' + filename)
    images_name = sorted(images_name)
    print(images_name)
    for i in images_name:
        images.append(cv2.imread(i))
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)
    for img in images:
        img = cv2.resize(img, (0, 0), fx=1.0, fy=1.0)
        b, g, r = cv2.split(img)
        images_r.append(np.array(r))
        images_g.append(np.array(b))
        images_b.append(np.array(g))
        # cv2.imwrite("img.png", cv2.merge((b,g,r)))
        # images_rgb.append(cv2.cvtColor(images[-1], cv2.COLOR_BGR2RGB))
    images_r, images_g, images_b = np.array(images_r), np.array(
        images_g), np.array(images_b)
    return images, images_rgb
def process(image_list, exposure_times, mode):
    if(mode=='MTB'):
        # MTB
        alignMTB = cv.createAlignMTB()
        alignMTB.process(image_list, image_list)
        return image_list, exposure_times
    elif(mode=='ORB'):
        print("Work mode: ORB")
        refImgIndex = chooseRef.getRefImage_br(image_list)
        cv.imwrite("ref.jpg", image_list[refImgIndex])
        return ORBAlignment(image_list,refImgIndex,exposure_times)
    elif(mode=='grad'):
        # todo
        return image_list, exposure_times
    elif(mode=='ECC'):
        print("Work mode: ECC")
        refImgIndex= chooseRef.getRefImage_br(image_list)
        cv.imwrite("ref.jpg", image_list[refImgIndex])
        return ECCAlignment(image_list,refImgIndex), exposure_times
    elif(mode=='AKAZE'):
        print("Work mode: AKAZE")
        # refImgIndex = chooseRef.getRefImage(image_list)
        refImgIndex = chooseRef.getRefImage_br(image_list)
        cv.imwrite("ref.jpg", image_list[refImgIndex])
        res_img_list = []
        res_exp_list = []
        idx_list, res_img_list = AKAZEAlignment(image_list,refImgIndex)
        for idx in idx_list:
            # res_img_list.append(image_list[idx])
            res_exp_list.append(exposure_times[idx])
        return res_img_list, res_exp_list
    elif(mode=='SIFT'):
        print("Work mode: SIFT")
        return SIFTProcess(image_list, exposure_times)
    else:
        return image_list, exposure_times
    def createHDR(self):
        """ Numpy array of exposure times from exif data """
        for image in self.image_paths:
            p = Photo(image)
            self.exposure_times.append(p.exifData())
        times_np = np.asarray(self.exposure_times, dtype=np.float32)

        # Align Images
        alignMTB = cv.createAlignMTB()
        alignMTB.process(self.im_list, self.im_list)

        # Find Camera Response Curve
        calibrateDebevec = cv.createCalibrateDebevec()
        responseDebevec = calibrateDebevec.process(self.im_list, times_np)

        # Merge Images
        mergeDebevec = cv.createMergeDebevec()
        hdrDebevec = mergeDebevec.process(self.im_list, times_np,
                                          responseDebevec)
        # Generate HDR image and LDR tone mapped preview
        cv.imwrite("hdr.hdr", hdrDebevec)
        toneMapReinhard = cv.createTonemapReinhard(1.5, 0.0)
        ldrReinhard = toneMapReinhard.process(hdrDebevec)
        cv.imwrite("hdr_preview.jpg", ldrReinhard * 255)
Exemple #20
0
def align_images(images):
    align_mtb = cv2.createAlignMTB()
    align_mtb.process(images, images)
Exemple #21
0
def alignImages(images):
    alignMTB = cv.createAlignMTB()
    alignMTB.process(images, images)
    return alignMTB
Exemple #22
0
  if len(sys.argv) > 1:
    # Read images from the command line
    images = []
    for filename in sys.argv[1:]:
      im = cv2.imread(filename)
      images.append(im)
    needsAlignment = False
  else :
    # Read example images
    images = readImagesAndTimes()
    needsAlignment = False
  
  # Align input images
  if needsAlignment:
    print("Aligning images ... ")
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)
  else :
    print("Skipping alignment ... ")
  
  # Merge using Exposure Fusion
  print("Merging using Exposure Fusion ... ");
  mergeMertens = cv2.createMergeMertens()
  exposureFusion = mergeMertens.process(images)

  # Save output image
  print("Saving output ... exposure-fusion.jpg")
  cv2.imwrite("exposure-fusion.jpg", exposureFusion * 255)


Exemple #23
0
def main(image_files,
         output_folder,
         exposure_times,
         resize=False,
         align=False,
         rad_plot=False,
         histo_plot=False):
    """ Generate a basic HDR image and rad_map plot from the images
        in the source folder,
        - and -
        Generate histograms from basic and histogram-equalized (histEQ) HDR images.
    """

    # Print the information associated with each image -- use this
    # to verify that the correct exposure time is associated with each
    # image, or else you will get very poor results
    print("{:^30} {:>15}".format("Filename", "Exposure Time"))
    print("\n".join([
        "{:>30} {:^15.4f}".format(*v) for v in zip(image_files, exposure_times)
    ]))

    img_stack = [
        cv2.imread(name) for name in image_files
        if path.splitext(name)[-1][1:].lower() in EXTENSIONS
    ]

    if any([im is None for im in img_stack]):
        raise RuntimeError("One or more input files failed to load.")

    # RESIZE: Subsampling the images can reduce runtime for large files,
    # set resize to True in main call at end of this file.
    if resize:
        img_stack = [img[::4, ::4] for img in img_stack]
        print('images resized, new shape =', img_stack[0].shape)
    else:
        print('images full size, shape =', img_stack[0].shape)

    # ALIGN: Corrects small misalignments in images. If your images need more
    # intensive alignment, do additional processing on your own.
    # Set align to True in main call at end of this file.
    if align:
        alignMTB = cv2.createAlignMTB()
        alignMTB.process(img_stack, img_stack)
        print('images aligned')
    else:
        print('image alignment disabled')

    # Compute HDR image and make rad_plot
    log_exposure_times = np.log(exposure_times)
    basicHDR = computeHDR(img_stack,
                          log_exposure_times,
                          output_folder,
                          rad_plot=rad_plot)
    cv2.imwrite(path.join(output_folder, "basicHDR.png"), basicHDR)
    print("Basic HDR image complete")

    # compute histogram equalized HDR image and make histogram plots
    histEQ = computeHistogramEQ(basicHDR.astype(np.uint8),
                                output_folder,
                                histo_plot=histo_plot)
    cv2.imwrite(path.join(output_folder, "histEQ.png"), histEQ)
    print("histogram EQ image complete")

    # compute best HDR
    bestHDR_image = hdr.bestHDR(basicHDR)
    cv2.imwrite(path.join(output_folder, "bestHDR.png"), bestHDR_image)

    histogram = hdr.computeHistogram(bestHDR_image.astype(np.uint8))
    cdf = hdr.computeCumulativeDensity(histogram)
    plotHistogramCDF(histogram,
                     cdf,
                     output_folder,
                     plot_filename="histCDF_bestHDR")
    print("best HDR image complete")

    return
Exemple #24
0
def align(images):
    print("Aligning Source Images...")
    align = cv2.createAlignMTB()
    align.process(images, images)
Exemple #25
0
    plt.show()


def contrast(L):
    Lmean = np.mean(L)
    first = 1 * np.sum((L - Lmean))


# насыщенность
def saturation(img):
    satIm = cv.cvtColor(img, cv.COLOR_BGR2HSV)
    saturation = np.mean(satIm[:, :, 1])
    return saturation


makeHDR = 1

if makeHDR == 1:
    args = input("Name of dir with SDR images: ")
    images, times = loadExposureSeq(args)
    alignMTB = cv.createAlignMTB(6, 4, True)
    alignMTB.process(images, images[1])
    calibrate = cv.createCalibrateDebevec()
    response = calibrate.process(images, times)
    # crf(response)
    merge_debevec = cv.createMergeDebevec()
    hdr = merge_debevec.process(images, times, response)
    cv.imwrite(input("Save HDR file as: "), hdr)
else:
    filename = input("Name of HDR file: ")
    hdr = cv.imread(filename, cv.IMREAD_UNCHANGED)
Exemple #26
0
import sys
import numpy as np
import cv2

if __name__ == '__main__':
	if len(sys.argv) < 2:
		print ("[Usage] python script <num of img> <dir of img>")
		sys.exit(0)
	num = int(sys.argv[1])
	dir = sys.argv[2]

	img = []
	for k in range(num):
		filename = dir + "/%02d.png" % k
		img.append(cv2.imread(filename, cv2.IMREAD_UNCHANGED))

	lst = [32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.007125, 0.00390625, 0.001953125, 0.00097656525]
	exp = np.array(lst[0:num], dtype=np.float32)

	Align = cv2.createAlignMTB()
	Align.process(img, img)

	ResponseCurve = cv2.createCalibrateDebevec()
	cur = ResponseCurve.process(img, exp)

	RadianceMap = cv2.createMergeDebevec()
	hdr = RadianceMap.process(img, exp, cur)

	cv2.imwrite("result.hdr", hdr)
    for filename in filenames:
        im = cv2.imread(filename)
        images.append(im)

    return images, times


if __name__ == '__main__':
    # Read images and exposure times
    print("Reading images ... ")

    images, times = readImagesAndTimes()

    # Align input images
    print("Aligning images ... ")
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)

    # Obtain Camera Response Function (CRF)
    print("Calculating Camera Response Function (CRF) ... ")
    calibrateDebevec = cv2.createCalibrateDebevec()
    responseDebevec = calibrateDebevec.process(images, times)

    # Merge images into an HDR linear image
    print("Merging images into one HDR image ... ")
    mergeDebevec = cv2.createMergeDebevec()
    hdrDebevec = mergeDebevec.process(images, times, responseDebevec)
    # Save HDR image.
    cv2.imwrite("./images/HDR/hdrDebevec-example.hdr", hdrDebevec)
    print("saved hdrDebevec.hdr ")
def enhance(image):
    images, times = readImagesAndTimes(image)
    alignMTB = cv2.createAlignMTB()
    mergeDebevec = cv2.createMergeDebevec()
    hdrDebevec = mergeDebevec.process(images, times, responseDebevec)
    return hdrDebevec