def surf_image_match(left_image, right_image):
    gray_left_image = cv.cvtColor(left_image, cv.COLOR_BGR2GRAY)
    gray_right_image = cv.cvtColor(right_image, cv.COLOR_BGR2GRAY)
    gpu_gray_left_image = cv.cuda_GpuMat(gray_left_image)
    gpu_gray_right_image = cv.cuda_GpuMat(gray_right_image)
    surf = cv.cuda.SURF_CUDA_create(4000)
    # gpu_left_key_points, gpu_left_descriptors = surf(gpu_gray_left_image, None)
    # gpu_right_key_points, gpu_right_descriptors = surf(gpu_gray_right_image, None)
    gpu_left_key_points, gpu_left_descriptors = surf.detectWithDescriptors(
        gpu_gray_left_image, None)
    gpu_right_key_points, gpu_right_descriptors = surf.detectWithDescriptors(
        gpu_gray_right_image, None)
    # left_key_points, left_descriptors = cv.cuda_SURF_CUDA.detectWithDescriptors(surf, gpu_gray_left_image, None)
    # right_key_points, right_descriptors = cv.cuda_SURF_CUDA.detectWithDescriptors(surf, gpu_gray_right_image, None)

    matcher = cv.cuda.DescriptorMatcher_createBFMatcher(cv.NORM_L2)
    matches = matcher.knnMatch(gpu_left_descriptors,
                               gpu_right_descriptors,
                               k=2)
    # DMatch List
    good_matches = [[m] for m, n in matches if m.distance < 0.7 * n.distance]
    # KeyPoints
    left_key_points = cv.cuda_SURF_CUDA.downloadKeypoints(
        surf, gpu_left_key_points)
    right_key_points = cv.cuda_SURF_CUDA.downloadKeypoints(
        surf, gpu_right_key_points)
    # return_image = cv.drawMatchesKnn(left_image, left_key_points, right_image, right_key_points, good_matches, None)
    return cv.drawMatchesKnn(left_image,
                             left_key_points,
                             right_image,
                             right_key_points,
                             good_matches,
                             None,
                             flags=2)
    def test_convolution(self):
        npMat = (np.random.random((128, 128)) * 255).astype(np.float32)
        npDims = np.array(npMat.shape)
        kernel = (np.random.random((3, 3)) * 1).astype(np.float32)
        kernelDims = np.array(kernel.shape)
        iS = (kernelDims / 2).astype(int)
        iE = npDims - kernelDims + iS

        cuMat = cv.cuda_GpuMat(npMat)
        cuKernel = cv.cuda_GpuMat(kernel)
        cuMatDst = cv.cuda_GpuMat(tuple(npDims - kernelDims + 1), cuMat.type())
        conv = cv.cuda.createConvolution()

        self.assertTrue(
            np.allclose(
                conv.convolve(cuMat, cuKernel, ccorr=True).download(),
                cv.filter2D(npMat, -1, kernel,
                            anchor=(-1, -1))[iS[0]:iE[0] + 1,
                                             iS[1]:iE[1] + 1]))

        conv.convolve(cuMat, cuKernel, cuMatDst, True)
        self.assertTrue(
            np.allclose(
                cuMatDst.download(),
                cv.filter2D(npMat, -1, kernel,
                            anchor=(-1, -1))[iS[0]:iE[0] + 1,
                                             iS[1]:iE[1] + 1]))
Exemple #3
0
 def __init__(self):
     self.is_pylon_data = False
     self.image_imput = ImageImput()
     self.camera_publish = rospy.Publisher("/camera_image",
                                           Image,
                                           queue_size=10)
     self.convert_x_publish = rospy.Publisher("/data_x",
                                              Float32,
                                              queue_size=1)
     self.convert_y_publish = rospy.Publisher("/data_y",
                                              Float32,
                                              queue_size=1)
     self.z_publish = rospy.Publisher("/data_z", Float32, queue_size=1)
     self.h_publish = rospy.Publisher("/data_h", Float32, queue_size=1)
     self.depth_publish = rospy.Publisher("/data_depth",
                                          Float32,
                                          queue_size=1)
     # 画像配列を生成
     self.image = np.arange(27).reshape(3, 3, 3)
     # データを生成
     self.z_datas = [0] * self.PYLON_NUMBER
     self.h_datas = [0] * self.PYLON_NUMBER
     self.convert_x_datas = [0] * self.PYLON_NUMBER
     #GPUメモリのアロケーション
     self.img_gpu_src = cv2.cuda_GpuMat()
     self.img_gpu_dst = cv2.cuda_GpuMat()
     #CUDA用ガウシアンフィルタ作成
     self.gaussian_filter = cv2.cuda.createGaussianFilter(
         cv2.CV_8UC3,
         cv2.CV_8UC3,
         ksize=self.GAUSSIAN_KERNEL_SIZE,
         sigma1=0,
         sigma2=0)
Exemple #4
0
def apply_gpu(img1, img2, bbox1, bbox2, kp_center1, kp_center2):
    """
    Still in development
    """

    cuMat1 = cv.cuda_GpuMat(img1)
    cuMat2 = cv.cuda_GpuMat(img2)


    c_surf = cv.cuda.SURF_CUDA_create(500)

    kp = c_surf.detect(cuMat1, None)
    kp = c_surf.downloadKeypoints(kp)
    kp = kp_filtersort_L2(kp, img1, bbox1, kp_center1)
    kp, des = c_surf.detectWithDescriptors(cuMat1, None,cv.cuda_GpuMat(kp))

    kp2 = c_surf.detect(cuMat2, None)
    kp2 = c_surf.downloadKeypoints(kp2)
    kp2 = kp_filtersort_L2(kp2, img2, bbox2, kp_center2)
    kp2, des2 = c_surf.compute(img2, kp2)
    
    
    # Brute Force matcher with default params (L2_NORM)
    cbf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_L1)
    cmatches = cbf.match(des, des2) 

    # Sort matches by score
    cmatches.sort(key=lambda x: x.distance, reverse=False)
    # Remove not so good matches
    numGoodMatches = int(len(cmatches) * 0.15)
    cmatches = cmatches[:numGoodMatches] 

    return (kp, des), (kp2, des2), cmatches
Exemple #5
0
def run(use_random=True, visualize=False):
    cuda_stream = cv2.cuda_Stream()
    backSub = cv2.cuda.createBackgroundSubtractorMOG2(history=100,
                                                      varThreshold=16,
                                                      detectShadows=False)
    # backSub = cv2.createBackgroundSubtractorKNN(history=30, dist2Threshold=400.0, detectShadows=True)
    warped_list = np.load("X:/frank.npy", mmap_mode='r')
    N = 1000
    bg_list = []
    for frame_counter in range(N):
        if use_random: index = random.randint(0, len(warped_list) - 1)
        else: index = frame_counter % len(warped_list)
        warped = warped_list[index]
        warped_gpu = cv2.cuda_GpuMat()
        warped_gpu.upload(warped)
        fgMask = backSub.apply(warped_gpu, -1, cuda_stream)
        fgMask = fgMask.download()
        fgMask = cv2.morphologyEx(fgMask,
                                  cv2.MORPH_CLOSE,
                                  kernel=np.ones((5, 5), np.uint8))
        if visualize: cv2.imshow('FG Mask', fgMask)
        bg = cv2.cuda_GpuMat(warped_gpu.size(), warped_gpu.type())
        backSub.getBackgroundImage(cuda_stream, bg)
        bg = bg.download()
        if visualize: cv2.imshow('BG', bg)
        key = cv2.waitKey(1)
        if key == 27:
            break
    cv2.imwrite("X:/final.png", bg)
    if visualize: cv2.waitKey(0)
    cv2.destroyAllWindows()
    def test_surf(self):
        img_path = os.environ['OPENCV_TEST_DATA_PATH'] + "/gpu/features2d/aloe.png"
        hessianThreshold = 100
        nOctaves = 3
        nOctaveLayers = 2
        extended = False
        keypointsRatio = 0.05
        upright = False

        npMat = cv.cvtColor(cv.imread(img_path),cv.COLOR_BGR2GRAY)
        cuMat = cv.cuda_GpuMat(npMat)

        try:
            cuSurf = cv.cuda_SURF_CUDA.create(hessianThreshold,nOctaves,nOctaveLayers,extended,keypointsRatio,upright)
            surf = cv.xfeatures2d_SURF.create(hessianThreshold,nOctaves,nOctaveLayers,extended,upright)
        except cv.error as e:
            self.assertEqual(e.code, cv.Error.StsNotImplemented)
            self.skipTest("OPENCV_ENABLE_NONFREE is not enabled in this build.")

        cuKeypoints = cuSurf.detect(cuMat,cv.cuda_GpuMat())
        keypointsHost = cuSurf.downloadKeypoints(cuKeypoints)
        keypoints = surf.detect(npMat)
        self.assertTrue(len(keypointsHost) == len(keypoints))

        cuKeypoints, cuDescriptors = cuSurf.detectWithDescriptors(cuMat,cv.cuda_GpuMat(),cuKeypoints,useProvidedKeypoints=True)
        keypointsHost = cuSurf.downloadKeypoints(cuKeypoints)
        descriptorsHost = cuDescriptors.download()
        keypoints, descriptors = surf.compute(npMat,keypoints)

        self.assertTrue(len(keypointsHost) == len(keypoints) and descriptorsHost.shape == descriptors.shape)
Exemple #7
0
    def test_cudaarithm_logical(self):
        npMat1 = (np.random.random((128, 128)) * 255).astype(np.uint8)
        npMat2 = (np.random.random((128, 128)) * 255).astype(np.uint8)

        cuMat1 = cv.cuda_GpuMat()
        cuMat2 = cv.cuda_GpuMat()
        cuMat1.upload(npMat1)
        cuMat2.upload(npMat2)

        self.assertTrue(np.allclose(cv.cuda.bitwise_or(cuMat1, cuMat2).download(),
                                         cv.bitwise_or(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.bitwise_and(cuMat1, cuMat2).download(),
                                         cv.bitwise_and(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.bitwise_xor(cuMat1, cuMat2).download(),
                                         cv.bitwise_xor(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.bitwise_not(cuMat1).download(),
                                         cv.bitwise_not(npMat1)))

        self.assertTrue(np.allclose(cv.cuda.min(cuMat1, cuMat2).download(),
                                         cv.min(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.max(cuMat1, cuMat2).download(),
                                         cv.max(npMat1, npMat2)))
    def test_cudafeatures2d(self):
        npMat1 = self.get_sample("samples/data/right01.jpg")
        npMat2 = self.get_sample("samples/data/right02.jpg")

        cuMat1 = cv.cuda_GpuMat()
        cuMat2 = cv.cuda_GpuMat()
        cuMat1.upload(npMat1)
        cuMat2.upload(npMat2)

        cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY)
        cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY)

        fast = cv.cuda_FastFeatureDetector.create()
        _kps = fast.detectAsync(cuMat1)

        orb = cv.cuda_ORB.create()
        _kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
        _kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)

        self.assertTrue(len(orb.convert(_kps1)) == _kps1.size()[0])
        self.assertTrue(len(orb.convert(_kps2)) == _kps2.size()[0])

        bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING)
        matches = bf.match(descs1, descs2)
        self.assertGreater(len(matches), 0)
        matches = bf.knnMatch(descs1, descs2, 2)
        self.assertGreater(len(matches), 0)
        matches = bf.radiusMatch(descs1, descs2, 0.1)
        self.assertGreater(len(matches), 0)

        self.assertTrue(
            True)  #It is sufficient that no exceptions have been there
    def test_cudaarithm(self):
        npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)

        cuMat = cv.cuda_GpuMat(npMat)
        cuMatDst = cv.cuda_GpuMat(cuMat.size(), cuMat.type())
        cuMatB = cv.cuda_GpuMat(cuMat.size(), cv.CV_8UC1)
        cuMatG = cv.cuda_GpuMat(cuMat.size(), cv.CV_8UC1)
        cuMatR = cv.cuda_GpuMat(cuMat.size(), cv.CV_8UC1)

        self.assertTrue(np.allclose(cv.cuda.merge(cv.cuda.split(cuMat)),
                                    npMat))

        cv.cuda.split(cuMat, [cuMatB, cuMatG, cuMatR])
        cv.cuda.merge([cuMatB, cuMatG, cuMatR], cuMatDst)
        self.assertTrue(np.allclose(cuMatDst.download(), npMat))

        shift = (np.random.random(
            (cuMat.channels(), )) * 8).astype(np.uint8).tolist()
        self.assertTrue(
            np.allclose(
                cv.cuda.rshift(cuMat, shift).download(), npMat >> shift))
        cv.cuda.rshift(cuMat, shift, cuMatDst)
        self.assertTrue(np.allclose(cuMatDst.download(), npMat >> shift))

        self.assertTrue(
            np.allclose(
                cv.cuda.lshift(cuMat, shift).download(),
                (npMat << shift).astype('uint8')))
        cv.cuda.lshift(cuMat, shift, cuMatDst)
        self.assertTrue(
            np.allclose(cuMatDst.download(), (npMat << shift).astype('uint8')))
Exemple #10
0
    def test_cudafeatures2d(self):
        npMat1 = self.get_sample("samples/data/right01.jpg")
        npMat2 = self.get_sample("samples/data/right02.jpg")

        cuMat1 = cv.cuda_GpuMat()
        cuMat2 = cv.cuda_GpuMat()
        cuMat1.upload(npMat1)
        cuMat2.upload(npMat2)

        cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY)
        cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY)

        fast = cv.cuda_FastFeatureDetector.create()
        kps = fast.detectAsync(cuMat1)

        orb = cv.cuda_ORB.create()
        kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
        kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)

        bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING)
        matches = bf.match(descs1, descs2)
        self.assertGreater(len(matches), 0)
        matches = bf.knnMatch(descs1, descs2, 2)
        self.assertGreater(len(matches), 0)
        matches = bf.radiusMatch(descs1, descs2, 0.1)
        self.assertGreater(len(matches), 0)

        self.assertTrue(True) #It is sufficient that no exceptions have been there
Exemple #11
0
    def test_calc(self):
        frame1 = os.environ[
            'OPENCV_TEST_DATA_PATH'] + '/gpu/opticalflow/frame0.png'
        frame2 = os.environ[
            'OPENCV_TEST_DATA_PATH'] + '/gpu/opticalflow/frame1.png'

        npMat1 = cv.cvtColor(cv.imread(frame1), cv.COLOR_BGR2GRAY)
        npMat2 = cv.cvtColor(cv.imread(frame2), cv.COLOR_BGR2GRAY)

        cuMat1 = cv.cuda_GpuMat(npMat1)
        cuMat2 = cv.cuda_GpuMat(npMat2)
        try:
            nvof = cv.cuda_NvidiaOpticalFlow_1_0.create(
                cuMat1.shape[1], cuMat1.shape[0], 5, False, False, False, 0)
            flow = nvof.calc(cuMat1, cuMat2, None)
            self.assertTrue(flow.shape[1] > 0 and flow.shape[0] > 0)
            flowUpSampled = nvof.upSampler(flow[0],
                                           cuMat1.shape[1], cuMat1.shape[0],
                                           nvof.getGridSize(), None)
            nvof.collectGarbage()
        except cv.error as e:
            if e.code == cv.Error.StsBadFunc or e.code == cv.Error.StsBadArg or e.code == cv.Error.StsNullPtr:
                self.skipTest(
                    "Algorithm is not supported in the current environment")
        self.assertTrue(flowUpSampled.shape[1] > 0
                        and flowUpSampled.shape[0] > 0)
def surf_image_stitch(left_frame, right_frame):
    surf = cv.cuda.SURF_CUDA_create(200)
    gray_left_frame = cv.cvtColor(left_frame, cv.COLOR_BGR2GRAY)
    gray_right_frame = cv.cvtColor(right_frame, cv.COLOR_BGR2GRAY)
    gpu_gray_left_frame = cv.cuda_GpuMat(gray_left_frame)
    gpu_gray_right_frame = cv.cuda_GpuMat(gray_right_frame)
    gpu_left_key_points, gpu_left_descriptors = surf.detectWithDescriptors(
        gpu_gray_left_frame, None)
    gpu_right_key_points, gpu_right_descriptors = surf.detectWithDescriptors(
        gpu_gray_right_frame, None)

    matcher = cv.cuda.DescriptorMatcher_createBFMatcher(cv.NORM_L2)
    matches = matcher.knnMatch(gpu_left_descriptors,
                               gpu_right_descriptors,
                               k=2)
    good_matches = [m for m, n in matches if m.distance < 0.5 * n.distance]
    left_key_points = cv.cuda_SURF_CUDA.downloadKeypoints(
        surf, gpu_left_key_points)
    right_key_points = cv.cuda_SURF_CUDA.downloadKeypoints(
        surf, gpu_right_key_points)
    left_points = np.array(
        [left_key_points[m.queryIdx].pt for m in good_matches])
    right_points = np.array(
        [right_key_points[m.trainIdx].pt for m in good_matches])
    h_matrix = cv.findHomography(left_points, right_points)
    left_height, left_width = left_frame.shape[:2]
    right_height, right_height = right_frame.shape[:2]
    transform_matrix = np.array([[1.0, 0, left_width], [0, 1.0, 0],
                                 [0, 0, 1.0]])
    m_matrix = np.dot(transform_matrix, h_matrix[0])
    corners = cv.warpPerspective(left_frame, m_matrix,
                                 (left_width * 2, left_height))
    corners[0:left_height, left_width:left_width * 2] = right_frame
    return corners
Exemple #13
0
def run(use_random=True, visualize=False):
    cuda_stream = cv2.cuda_Stream()
    backSub = cv2.cuda.createBackgroundSubtractorMOG2(history=100,
                                                      varThreshold=16,
                                                      detectShadows=False)
    # backSub = cv2.createBackgroundSubtractorKNN(history=30, dist2Threshold=400.0, detectShadows=True)
    warped_list = np.load("X:/warped.npy", mmap_mode='r')
    valid_mask_list = np.load("X:/mask.npy", mmap_mode='r')
    i = 0
    frame_counter = 0
    mode = True
    N = 1000
    bg_list = []
    for frame_counter in range(N):
        if use_random: index = random.randint(0, len(warped_list) - 1)
        else: index = frame_counter % len(warped_list)
        warped = warped_list[index]
        valid_mask = valid_mask_list[index]
        frame_counter += 1
        if frame_counter > 500 and random.randint(0, N - frame_counter) < 200:
            warped_final = bg_list[random.randint(0, len(bg_list) - 1)]
        else:
            if frame_counter < 200:
                mean_canvas = np.ones(warped.shape, dtype="uint8") * 200
                mean_canvas = cv2.bitwise_or(mean_canvas,
                                             mean_canvas,
                                             mask=cv2.bitwise_not(valid_mask))
            else:
                mean_canvas = cv2.bitwise_or(bg,
                                             bg,
                                             mask=cv2.bitwise_not(valid_mask))
                if frame_counter % 8 == 0: bg_list.append(bg)
            valid_mask = cv2.bitwise_or(warped, warped, mask=valid_mask)
            final = cv2.bitwise_or(mean_canvas, valid_mask)
            if visualize: cv2.imshow('Passed', final)
            final_gpu = cv2.cuda_GpuMat()
            final_gpu.upload(final)
            final = cv2.cuda_GpuMat(final)
            fgMask = backSub.apply(final, -1, cuda_stream)
            fgMask = fgMask.download()
            # fgMask = cv2.morphologyEx(fgMask, cv2.MORPH_CLOSE, kernel=np.ones((5,5),np.uint8))
            # cv2.imshow('FG Mask', fgMask)
            bg = cv2.cuda_GpuMat(final_gpu.size(), final_gpu.type())
            backSub.getBackgroundImage(cuda_stream, bg)
            bg = bg.download()
            bg_list.append(bg)
            if visualize:
                cv2.imshow('BG', bg)
                key = cv2.waitKey(1)
                if key == 27:
                    break
                if key == ord('m'):
                    mode = not mode
                if key == ord(' '):
                    cv2.imwrite(str(i) + ".jpg", warped)
                    i += 1
    cv2.imwrite("X:/final.png", bg)
    # cv2.waitKey(0)
    cv2.destroyAllWindows()
    def __init__(self, width, height):
        self.width = width
        self.height = height

        self.src_gpu = [cv2.cuda_GpuMat() for i in range(4)]
        self.dst_gpu = cv2.cuda_GpuMat()

        self.merged_cpu = np.zeros((height, width, 4), dtype=np.uint8)
        self.merged_gpu = cv2.cuda_GpuMat(height, width, cv2.CV_8UC4)
    def test_warp(self):
        npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
        size = npMat.shape[:2]
        M1 = create_affine_transform_matrix(size, np.pi / 2)

        cuMat = cv.cuda_GpuMat(npMat)
        cuMatDst = cv.cuda_GpuMat(size, cuMat.type())

        borderType = cv.BORDER_REFLECT101
        self.assertTrue(
            np.allclose(
                cv.cuda.warpAffine(cuMat, M1, size,
                                   borderMode=borderType).download(),
                cv.warpAffine(npMat, M1, size, borderMode=borderType)))
        cv.cuda.warpAffine(cuMat, M1, size, cuMatDst, borderMode=borderType)
        self.assertTrue(
            np.allclose(cuMatDst.download(),
                        cv.warpAffine(npMat, M1, size, borderMode=borderType)))

        interpolation = cv.INTER_NEAREST
        flags = interpolation | cv.WARP_INVERSE_MAP
        dst_gold = cv.warpAffine(npMat, M1, size, flags=flags)
        cuMaps = cv.cuda.buildWarpAffineMaps(M1, True, size)
        dst = cv.remap(npMat, cuMaps[0].download(), cuMaps[1].download(),
                       interpolation)
        self.assertTrue(np.allclose(dst, dst_gold))

        xmap = cv.cuda_GpuMat(size, cv.CV_32FC1)
        ymap = cv.cuda_GpuMat(size, cv.CV_32FC1)
        cv.cuda.buildWarpAffineMaps(M1, True, size, xmap, ymap)
        dst = cv.remap(npMat, xmap.download(), ymap.download(), interpolation)
        self.assertTrue(np.allclose(dst, dst_gold))

        M2 = create_perspective_transform_matrix(size, np.pi / 2)
        np.allclose(
            cv.cuda.warpPerspective(cuMat, M2, size,
                                    borderMode=borderType).download(),
            cv.warpPerspective(npMat, M2, size, borderMode=borderType))
        cv.cuda.warpPerspective(cuMat,
                                M2,
                                size,
                                cuMatDst,
                                borderMode=borderType)
        self.assertTrue(
            np.allclose(
                cuMatDst.download(),
                cv.warpPerspective(npMat, M2, size, borderMode=borderType)))

        dst_gold = cv.warpPerspective(npMat, M2, size, flags=flags)
        cuMaps = cv.cuda.buildWarpPerspectiveMaps(M2, True, size)
        dst = cv.remap(npMat, cuMaps[0].download(), cuMaps[1].download(),
                       interpolation)
        self.assertTrue(np.allclose(dst, dst_gold))

        cv.cuda.buildWarpPerspectiveMaps(M2, True, size, xmap, ymap)
        dst = cv.remap(npMat, xmap.download(), ymap.download(), interpolation)
        self.assertTrue(np.allclose(dst, dst_gold))
Exemple #16
0
def optical_flow():
    size = (224, 224)

    cap = cv2.VideoCapture(
        "hmdb51/brush_hair/April_09_brush_hair_u_nm_np1_ba_goo_0.avi")
    ret, previous_frame = cap.read()

    if ret:
        # resize frame
        frame = cv2.resize(previous_frame, size)

        # convert to gray
        previous_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        previous_frame = np.float32(previous_frame) / 255.0

        # upload pre-processed frame to GPU
        gpu_previous = cv2.cuda_GpuMat(size, cv2.CV_32FC1)
        gpu_previous.upload(previous_frame)

        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frame = cv2.resize(frame, size)

            current_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            current_frame = np.float32(current_frame) / 255.0

            gpu_current = cv2.cuda_GpuMat(size, cv2.CV_32FC1)
            gpu_current.upload(current_frame)

            gpu_flow = cv2.cuda_BroxOpticalFlow.create(0.197, 50.0, 0.8, 5,
                                                       150, 10)
            gpu_flow = cv2.cuda_BroxOpticalFlow.calc(
                gpu_flow,
                gpu_previous,
                gpu_current,
                None,
            )

            optical_flow = gpu_flow.download()

            gpu_flow_x = cv2.cuda_GpuMat(gpu_flow.size(), cv2.CV_32FC1)
            gpu_flow_y = cv2.cuda_GpuMat(gpu_flow.size(), cv2.CV_32FC1)

            cv2.cuda.split(gpu_flow, [gpu_flow_x, gpu_flow_y])

            optical_flow_x = gpu_flow_x.download()
            optical_flow_y = gpu_flow_y.download()

            a = np.concatenate((optical_flow, np.zeros((224, 224, 1))), axis=2)

            dist_x = optical_flow_x.max() - optical_flow_x.min()
            dist_y = optical_flow_y.max() - optical_flow_x.min()

            gpu_previous.upload(current_frame)
Exemple #17
0
def color_filter(frame, hsv_mat, gray_mat, lower, upper):
    mask_cw = cv2.cuda_GpuMat()
    mask_cw_im = cv2.cuda_GpuMat()
    lower_white = np.array([0, 0, 0], dtype="uint8")
    upper_white = np.array([0, 0, 255], dtype="uint8")
    mask_range = in_range(frame, hsv_mat, lower, upper)
    mask_white = in_range(frame, gray_mat, lower_white, upper_white)
    mask_cw = cv2.cuda.bitwise_or(mask_white, mask_range)
    mask_cw_im = cv2.cuda.bitwise_and(gray_mat, mask_cw)
    return mask_cw_im
Exemple #18
0
def cuda_test():
    for i in range(1000):
        npTmp = np.random.random((1024, 1024)).astype(np.float32)
        npMat1 = np.stack([npTmp, npTmp], axis=2)
        npMat2 = npMat1
        cuMat1 = cv.cuda_GpuMat()
        cuMat2 = cv.cuda_GpuMat()
        cuMat1.upload(npMat1)
        cuMat2.upload(npMat2)
        cv.cuda.gemm(cuMat1, cuMat2, 1, None, 0, None, 1)
    def __init__(self, width, height):
        self.width = width
        self.height = height

        self.src_gpu = cv2.cuda_GpuMat()
        self.dst_gpu = [cv2.cuda_GpuMat() for i in range(4)]

        self.color_cpu = np.zeros((height, width, 3), dtype=np.uint8)
        self.alpha_cpu = np.zeros((height, width, 1), dtype=np.uint8)
        self.color_gpu = cv2.cuda_GpuMat(height, width, cv2.CV_8UC3)
        self.alpha_gpu = cv2.cuda_GpuMat(height, width, cv2.CV_8UC1)
Exemple #20
0
def main_module():
    cap = cv2.VideoCapture("video.mp4")
    img_mat = cv2.cuda_GpuMat()

    while cap.isOpened():
        ret, frame = cap.read()

        # lower_black = np.array([0, 0, 0], dtype="uint8")
        # upper_black = np.array([230, 255, 65], dtype="uint8")

        # frame = cv2.imread("dahedra_armor.png")
        # cv2.imshow("frame", frame)
        img_mat.upload(frame)
        gray_mat = cv2.cuda.cvtColor(img_mat, cv2.COLOR_RGB2GRAY)
        median_filter = cv2.cuda.createMedianFilter(cv2.CV_8UC1, 7)
        median = median_filter.apply(gray_mat)
        norm = cv2.cuda_GpuMat()
        norm = cv2.cuda.normalize(median, 0, 255, cv2.NORM_MINMAX, 1)
        norm_c = norm.download()
        cv2.imshow("norm", norm_c)
        warp = bird_view(frame, norm)
        wp = warp.download()
        cv2.imshow("warp-gpu", wp)
        # canny_filter = cv2.cuda.createCannyEdgeDetector(50, 150)
        # canny = canny_filter.detect(norm)
        # canny_show = canny.download()
        # cv2.imshow("canny", canny_show)

        # hsv_mat = cv2.cuda.cvtColor(img_mat, cv2.COLOR_RGB2HSV)
        # gauss = cv2.cuda.createGaussianFilter(cv2.CV_8UC3, -1, (3, 3), 16)
        #
        # filtered_col = color_filter(frame, hsv_mat, gray_img, lower_black, upper_black)
        # fil = filtered_col.download()
        # # cv2.imshow("fil", fil)
        # gauss_filtered = gauss.apply(filtered_col)
        # # gauss_filtered = gauss.apply(hsv_mat)
        #
        # detector = cv2.cuda.createCannyEdgeDetector(50, 150)
        # detector.detect(gauss_filtered)
        # canny = detector.download()
        # cv2.imshow("Canny", canny)

        # if cv2.waitKey(10) & 0xFF == ord('q'):
        #     break

        # The following frees up resources and closes all windows
        # cap.release()
        # cv2.destroyAllWindows()
        if cv2.waitKey(10) & 0xFF == ord('q'):
            break

    # The following frees up resources and closes all windows
    cap.release()
    cv2.destroyAllWindows()
Exemple #21
0
def bird_view(frame, img_mat):
    image_h, image_w, _ = frame.shape
    # src = cv2.cuda_GpuMat()
    # dst = cv2.cuda_GpuMat()
    src = np.float32([[0, image_h], [1207, image_h], [0, 0], [image_w, 0]])
    dst = np.float32([[568, image_h], [711, image_h], [0, 0], [image_w, 0]])
    M = cv2.cuda_GpuMat()
    M_cpu = cv2.getPerspectiveTransform(src, dst)
    M.upload(M_cpu)
    bird_mat = cv2.cuda_GpuMat()
    bird_mat = cv2.cuda.warpPerspective(img_mat, M, (1280, 960))
    return bird_mat
Exemple #22
0
    def test_cudaarithm_arithmetic(self):
        npMat1 = np.random.random((128, 128, 3)) - 0.5
        npMat2 = np.random.random((128, 128, 3)) - 0.5

        cuMat1 = cv.cuda_GpuMat()
        cuMat2 = cv.cuda_GpuMat()
        cuMat1.upload(npMat1)
        cuMat2.upload(npMat2)

        self.assertTrue(
            np.allclose(
                cv.cuda.add(cuMat1, cuMat2).download(), cv.add(npMat1,
                                                               npMat2)))

        self.assertTrue(
            np.allclose(
                cv.cuda.subtract(cuMat1, cuMat2).download(),
                cv.subtract(npMat1, npMat2)))

        self.assertTrue(
            np.allclose(
                cv.cuda.multiply(cuMat1, cuMat2).download(),
                cv.multiply(npMat1, npMat2)))

        self.assertTrue(
            np.allclose(
                cv.cuda.divide(cuMat1, cuMat2).download(),
                cv.divide(npMat1, npMat2)))

        self.assertTrue(
            np.allclose(
                cv.cuda.absdiff(cuMat1, cuMat2).download(),
                cv.absdiff(npMat1, npMat2)))

        self.assertTrue(
            np.allclose(
                cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE).download(),
                cv.compare(npMat1, npMat2, cv.CMP_GE)))

        self.assertTrue(
            np.allclose(cv.cuda.abs(cuMat1).download(), np.abs(npMat1)))

        self.assertTrue(
            np.allclose(
                cv.cuda.sqrt(cv.cuda.sqr(cuMat1)).download(),
                cv.cuda.abs(cuMat1).download()))

        self.assertTrue(
            np.allclose(cv.cuda.log(cv.cuda.exp(cuMat1)).download(), npMat1))

        self.assertTrue(
            np.allclose(cv.cuda.pow(cuMat1, 2).download(), cv.pow(npMat1, 2)))
Exemple #23
0
 def hough_init(self):
     self.image_canny = cv2.cuda_GpuMat((self.W_size, self.H_size),
                                        cv2.CV_8U)
     self.cannyFilter = cv2.cuda.createCannyEdgeDetector(low_thresh=5,
                                                         high_thresh=20,
                                                         apperture_size=3)
     self.houghFilter = cv2.cuda.createHoughLinesDetector(rho=1,
                                                          theta=(np.pi /
                                                                 60),
                                                          threshold=3,
                                                          doSort=True,
                                                          maxLines=30)
     self.houghResult_gpu = cv2.cuda_GpuMat((30, 2), cv2.CV_32FC2)
Exemple #24
0
def main():
    rand = np.random.random((1024, 1024)).astype(np.float32)
    h_array1 = np.stack([rand, rand],axis=2)
    h_array2 = h_array1
    d_array1 = cv.cuda_GpuMat()
    d_array2 = cv.cuda_GpuMat()
    d_array1.upload(h_array1)
    d_array2.upload(h_array2)

    start = time.time()
    cv.cuda.gemm(d_array1, d_array2, 1, None, 0, None, 1)
    end = time.time()
    print("Time elapsed:", end - start, "sec")
def is_same_object(left_frame, right_frame, left_boxes, left_indices,
                   right_boxes, right_indices):
    gray_left_image = cv.cvtColor(left_frame, cv.COLOR_BGR2GRAY)
    gray_right_image = cv.cvtColor(right_frame, cv.COLOR_BGR2GRAY)
    gpu_gray_left_image = cv.cuda_GpuMat(gray_left_image)
    gpu_gray_right_image = cv.cuda_GpuMat(gray_right_image)
    surf = cv.cuda.SURF_CUDA_create(4000)
    gpu_left_key_points, gpu_left_descriptors = surf.detectWithDescriptors(
        gpu_gray_left_image, None)
    gpu_right_key_points, gpu_right_descriptors = surf.detectWithDescriptors(
        gpu_gray_right_image, None)

    matcher = cv.cuda.DescriptorMatcher_createBFMatcher(cv.NORM_L2)
    matches = matcher.knnMatch(gpu_left_descriptors,
                               gpu_right_descriptors,
                               k=2)
    good_match = [[m] for m, n in matches if m.distance < 0.7 * n.distance]
    left_key_points = cv.cuda_SURF_CUDA.downloadKeypoints(
        surf, gpu_left_key_points)
    right_key_points = cv.cuda_SURF_CUDA.downloadKeypoints(
        surf, gpu_right_key_points)

    flag = []
    for left_index in left_indices:
        is_find = False
        left_idx = left_index[0]
        left_box = left_boxes[left_idx]
        for match in good_match:
            if (left_box[0] <= left_key_points[match[0].queryIdx].pt[0] <=
                (left_box[0] + left_box[2])) and (
                    left_box[1] <= left_key_points[match[0].queryIdx].pt[1] <=
                    (left_box[1] + left_box[3])):
                right_match_point = right_key_points[match[0].trainIdx].pt
                for right_index in right_indices:
                    right_idx = right_index[0]
                    right_box = right_boxes[right_idx]
                    if (right_box[0] <= right_match_point[0] <=
                            right_box[0] + right_box[2]) and (
                                right_box[1] <= right_match_point[1] <=
                                right_box[3]):
                        if right_idx not in flag:
                            flag.append(right_idx)
                            is_find = True
                            break
            if is_find:
                break
        if not is_find:
            flag.append(-1)
    return flag
Exemple #26
0
    def test_cudaarithm_arithmetic(self):
        npMat1 = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)

        cuMat1 = cv.cuda_GpuMat(npMat1)
        cuMatDst = cv.cuda_GpuMat(cuMat1.size(), cuMat1.type())
        cuMatB = cv.cuda_GpuMat(cuMat1.size(), cv.CV_8UC1)
        cuMatG = cv.cuda_GpuMat(cuMat1.size(), cv.CV_8UC1)
        cuMatR = cv.cuda_GpuMat(cuMat1.size(), cv.CV_8UC1)

        self.assertTrue(
            np.allclose(cv.cuda.merge(cv.cuda.split(cuMat1)), npMat1))

        cv.cuda.split(cuMat1, [cuMatB, cuMatG, cuMatR])
        cv.cuda.merge([cuMatB, cuMatG, cuMatR], cuMatDst)
        self.assertTrue(np.allclose(cuMatDst.download(), npMat1))
Exemple #27
0
def preprocess(files):
    # copy image files
    i_files = files.copy()
    
    # create GPU frame to hold images
    gpu_frame = cv.cuda_GpuMat()
    
    for i in range(len(i_files)):
        # load image (CPU)
        screenshot = cv.imread(f'../../media/{i_files[i]}')

        # fit screenshot to (GPU) frame
        gpu_frame.upload(screenshot)

        # translate colors to opencv (numpy.ndarray -> cv2.cuda_GpuMat)
        screenshot = cv.cuda.cvtColor(gpu_frame, cv.COLOR_RGB2BGR)
        screenshot = cv.cuda.cvtColor(screenshot, cv.COLOR_BGR2GRAY)

        # inverted threshold @ 100
        screenshot = cv.cuda.threshold(screenshot, 125, 255, cv.THRESH_BINARY)

        # resize image
        screenshot = cv.cuda.resize(screenshot[1], (200, 200))
        
        # download image from GPU (cv2.cuda_GpuMat -> numpy.ndarray)
        screenshot = screenshot.download()

        # replace file name with new image
        i_files[i] = screenshot
    
    # output preprocessed images
    return i_files
Exemple #28
0
def thresholding(img):
    #applying Canny edge detection along with dilating erode

    #CPU CODE
    # imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #CUDA CODE
    img_mat = cv2.cuda_GpuMat()
    img_mat.upload(img)
    gray_mat = cv2.cuda.cvtColor(img_mat, cv2.COLOR_RGB2GRAY)
    #CONTINUE CUDA#imgGray = gray_mat.download()

    kernel = np.ones((5, 5))

    #CPU CODE (GaussianBlur)
    #imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 0)
    #CUDA CODE (GaussianBlur ==> bilateralFilter)
    #CONTINUE CUDA#imgMat_src = cv2.cuda_GpuMat()
    #CONTINUE CUDA#imgMat_src.upload(imgGray)
    #CONTINUE CUDA#imgMat_dst = cv2.cuda.bilateralFilter(imgMat_src, 5, 5, 0)
    imgBlur = cv2.cuda.bilateralFilter(gray_mat, 5, 5, 0)
    #CONTINUE CUDA#imgBlur = imgMat_dst.download()

    #CONTINUE CUDA#imgCanny = cv2.Canny(imgBlur, 50, 100)
    cannyReady = cv2.cuda.createCannyEdgeDetector(50, 100)
    imgCanny_mat = cannyReady.detect(imgBlur)
    imgCanny = imgCanny_mat.download()

    #imgClose = cv2.morphologyEx(imgCanny, cv2.MORPH_CLOSE, np.ones((10,10)))
    imgDial = cv2.dilate(imgCanny, kernel, iterations=1)
    imgErode = cv2.erode(imgDial, kernel, iterations=1)

    imgColor = colorFilter(img)
    combinedImage = cv2.bitwise_or(imgColor, imgErode)
    #combing colorfilter image and edge image
    return combinedImage, imgCanny, imgColor
Exemple #29
0
    def __init__(self, cam, gui=None):
        super(ImageProcPythonCommand, self).__init__()

        self._logger = getLogger(__name__)
        self._logger.addHandler(NullHandler())
        self._logger.setLevel(DEBUG)
        self._logger.propagate = True

        self.camera = cam
        self.Line = Line_Notify(self.camera)

        self.gui = gui

        self.gsrc = cv2.cuda_GpuMat()
        self.gtmpl = cv2.cuda_GpuMat()
        self.gresult = cv2.cuda_GpuMat()
Exemple #30
0
    def test_cudaimgproc_cvtColor(self):
        npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
        cuMat = cv.cuda_GpuMat()
        cuMat.upload(npMat)

        self.assertTrue(np.allclose(cv.cuda.cvtColor(cuMat, cv.COLOR_BGR2HSV).download(),
                                         cv.cvtColor(npMat, cv.COLOR_BGR2HSV)))
Exemple #31
0
 def test_cuda_interop(self):
     npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
     cuMat = cv.cuda_GpuMat()
     cuMat.upload(npMat)
     self.assertTrue(cuMat.cudaPtr() != 0)
     stream = cv.cuda_Stream()
     self.assertTrue(stream.cudaPtr() != 0)
Exemple #32
0
 def flow_init(self):
     self.is_first_image = True
     self.image_prvs_gray = cv2.cuda_GpuMat(
         (self.image_size[1], self.image_size[0]), cv2.CV_8U)
     self.nvof = cv2.cuda_FarnebackOpticalFlow.create(numLevels=3,
                                                      pyrScale=0.5,
                                                      fastPyramids=False,
                                                      winSize=15,
                                                      numIters=3,
                                                      polyN=5,
                                                      polySigma=1.1,
                                                      flags=0)
     self.flow_gpu = cv2.cuda_GpuMat(
         (self.image_size[1], self.image_size[0]), cv2.CV_32FC2)
     self.nvof.calc(self.image_prvs_gray, self.image_next_gray,
                    None)  # only to speed up the first calculation
Exemple #33
0
def colorFilter(img):
    #applying color filter for specific color(considering yellow and white color)

    #CUDA CODE
    img_mat = cv2.cuda_GpuMat()
    img_mat.upload(img)
    hsv_mat = cv2.cuda.cvtColor(img_mat, cv2.COLOR_BGR2HSV)
    hsv = hsv_mat.download()

    #CPU CODE
    # hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

    lowerYellow = np.array([18, 94, 140])  #yellow color range
    upperYellow = np.array([48, 255, 255])
    lowerWhite = np.array([0, 0, 200])
    upperWhite = np.array([255, 255, 255])

    maskedWhite = cv2.inRange(hsv, lowerWhite, upperWhite)
    maskedYellow = cv2.inRange(hsv, lowerYellow, upperYellow)
    combinedImage = cv2.bitwise_or(maskedWhite, maskedYellow)

    #CONTINUE CUDA# hsv_mat => hsv
    #CONTINUE CUDA# maskedWhite_mat = cv2.cuda.threshold(hsv_mat, lowerWhite, upperWhite)
    #CONTINUE CUDA# maskedYellow_mat = cv2.cuda.threshold(hsv_mat, lowerYellow, upperYellow)
    #CONTINUE CUDA# combine_mat = cv2.cuda.bitwise_or(maskedWhite_mat, maskedYellow_mat)
    #CONTINUE CUDA# combinedImage = combine_mat.download()
    return combinedImage
Exemple #34
0
    def test_cuda_filter_laplacian(self):
        npMat = (np.random.random((200, 200)) * 255).astype(np.uint16)
        gpuMat = cv.cuda_GpuMat()
        gpuMat.upload(npMat)
        gpuMat = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3).apply(gpuMat)

        self.assertTrue(np.allclose(gpuMat.download(), cv.Laplacian(npMat, cv.CV_16UC1, ksize=3)))
Exemple #35
0
    def test_cuda_imgproc_cvtColor(self):
        npMat = (np.random.random((200, 200, 3)) * 255).astype(np.uint8)
        gpuMat = cv.cuda_GpuMat()
        gpuMat.upload(npMat)
        gpuMat2 = cv.cuda.cvtColor(gpuMat, cv.COLOR_BGR2HSV)

        self.assertTrue(np.allclose(gpuMat2.download(), cv.cvtColor(npMat, cv.COLOR_BGR2HSV)))
Exemple #36
0
    def test_cudaarithm_arithmetic(self):
        npMat1 = np.random.random((128, 128, 3)) - 0.5
        npMat2 = np.random.random((128, 128, 3)) - 0.5

        cuMat1 = cv.cuda_GpuMat()
        cuMat2 = cv.cuda_GpuMat()
        cuMat1.upload(npMat1)
        cuMat2.upload(npMat2)

        self.assertTrue(np.allclose(cv.cuda.add(cuMat1, cuMat2).download(),
                                         cv.add(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.subtract(cuMat1, cuMat2).download(),
                                         cv.subtract(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.multiply(cuMat1, cuMat2).download(),
                                         cv.multiply(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.divide(cuMat1, cuMat2).download(),
                                         cv.divide(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.absdiff(cuMat1, cuMat2).download(),
                                         cv.absdiff(npMat1, npMat2)))

        self.assertTrue(np.allclose(cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE).download(),
                                         cv.compare(npMat1, npMat2, cv.CMP_GE)))

        self.assertTrue(np.allclose(cv.cuda.abs(cuMat1).download(),
                                         np.abs(npMat1)))

        self.assertTrue(np.allclose(cv.cuda.sqrt(cv.cuda.sqr(cuMat1)).download(),
                                    cv.cuda.abs(cuMat1).download()))


        self.assertTrue(np.allclose(cv.cuda.log(cv.cuda.exp(cuMat1)).download(),
                                                            npMat1))

        self.assertTrue(np.allclose(cv.cuda.pow(cuMat1, 2).download(),
                                         cv.pow(npMat1, 2)))
Exemple #37
0
    def test_cudaimgproc(self):
        npC1 = (np.random.random((128, 128)) * 255).astype(np.uint8)
        npC3 = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
        npC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
        cuC1 = cv.cuda_GpuMat()
        cuC3 = cv.cuda_GpuMat()
        cuC4 = cv.cuda_GpuMat()
        cuC1.upload(npC1)
        cuC3.upload(npC3)
        cuC4.upload(npC4)

        cv.cuda.cvtColor(cuC3, cv.COLOR_RGB2HSV)
        cv.cuda.demosaicing(cuC1, cv.cuda.COLOR_BayerGR2BGR_MHT)
        cv.cuda.gammaCorrection(cuC3)
        cv.cuda.alphaComp(cuC4, cuC4, cv.cuda.ALPHA_XOR)
        cv.cuda.calcHist(cuC1)
        cv.cuda.equalizeHist(cuC1)
        cv.cuda.evenLevels(3, 0, 255)
        cv.cuda.meanShiftFiltering(cuC4, 10, 5)
        cv.cuda.meanShiftProc(cuC4, 10, 5)
        cv.cuda.bilateralFilter(cuC3, 3, 16, 3)
        cv.cuda.blendLinear

        cv.cuda.meanShiftSegmentation(cuC4, 10, 5, 5).download()

        clahe = cv.cuda.createCLAHE()
        clahe.apply(cuC1, cv.cuda_Stream.Null());

        histLevels = cv.cuda.histEven(cuC3, 20, 0, 255)
        cv.cuda.histRange(cuC1, histLevels)

        detector = cv.cuda.createCannyEdgeDetector(0, 100)
        detector.detect(cuC1)

        detector = cv.cuda.createHoughLinesDetector(3, np.pi / 180, 20)
        detector.detect(cuC1)

        detector = cv.cuda.createHoughSegmentDetector(3, np.pi / 180, 20, 5)
        detector.detect(cuC1)

        detector = cv.cuda.createHoughCirclesDetector(3, 20, 10, 10, 20, 100)
        detector.detect(cuC1)

        detector = cv.cuda.createGeneralizedHoughBallard()
        #BUG: detect accept only Mat!
        #Even if generate_gpumat_decls is set to True, it only wraps overload CUDA functions.
        #The problem is that Mat and GpuMat are not fully compatible to enable system-wide overloading
        #detector.detect(cuC1, cuC1, cuC1)

        detector = cv.cuda.createGeneralizedHoughGuil()
        #BUG: same as above..
        #detector.detect(cuC1, cuC1, cuC1)

        detector = cv.cuda.createHarrisCorner(cv.CV_8UC1, 15, 5, 1)
        detector.compute(cuC1)

        detector = cv.cuda.createMinEigenValCorner(cv.CV_8UC1, 15, 5, 1)
        detector.compute(cuC1)

        detector = cv.cuda.createGoodFeaturesToTrackDetector(cv.CV_8UC1)
        detector.detect(cuC1)

        matcher = cv.cuda.createTemplateMatching(cv.CV_8UC1, cv.TM_CCOEFF_NORMED)
        matcher.match(cuC3, cuC3)

        self.assertTrue(True) #It is sufficient that no exceptions have been there
Exemple #38
0
    def test_cuda_upload_download(self):
        npMat = (np.random.random((200, 200, 3)) * 255).astype(np.uint8)
        gpuMat = cv.cuda_GpuMat()
        gpuMat.upload(npMat)

        self.assertTrue(np.allclose(gpuMat.download(), npMat))