def draw(self, q): previousTime = time.clock() #plt.ion() last_time = time.clock() nt = 0 pn = 0 y = 0.0 while (True): while (q.empty() or ((time.clock() - previousTime) > self.interval)) is False: y = q.get() self.mem.append(y) nt += 1 #self.render_gym() #self.render_matplot() #self.render_cv() self.render_sim(y, y) fps = 1.0 / (time.clock() - last_time) print( color, "loop running on {} fps with {} recieve speed".format( fps, (nt - pn) * fps)) pn = nt last_time = time.clock() previousTime = time.clock() cv2.destroAllWindows()
def working(): ''' This funtion detect faces ''' face_cascade = cv2.CascadeClassifier('files/haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('files/haarcascade_eye.xml') frame = cv2.imread('woman1.png') gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale( gray,1.1,5 ) for (x,y,w,h) in faces: frame = cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),10) roi_gray = gray[y:y+h,x:x+w] roi_color = frame[y:y+h,x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,0,255),10) while True: #Display RGB image cv2.imshow("Woman",frame) #Display Gray image cv2.imshow("Gray Woman",gray) #Quit program when 'esc' key input k = cv2.waitKey(0) & 0xFF if k == 27: break cv2.destroAllWindows()
image_tensor=detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes=detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores=detection_graph.get_tensor_by_name('detection_scores:0') detection_classes=detection_graph.get_tensor_by_name('detection_classes:0') num_detections=detection_graph.get_tensor_by_name('num_detections:0') while(cap.isOpened()): vector_image = load_image() vector_image_hd = np.expand_dims(vector_image,axis=0) (boxes,scores,classes,num)=sess.run([detection_boxes,detection_scores,detection_classes,num_detections],feed_dict={image_tensor:vector_image_hd}) # visualization vis_util.visualize_boxes_and_labels_on_image_array( vector_image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=5) cv2.imshow('Frame',vector_image) if cv2.waitKey(10) & 0xFF == ord('q'): break cap.release() cv2.destroAllWindows()
def main(): blnKNNTrainingSuccessful = DetectChars.loadKNNDataAndTrainKNN( ) # attempt KNN training if blnKNNTrainingSuccessful == False: # if KNN training was not successful print( "\nerror: KNN traning was not successful\n") # show error message return # and exit program # end if imgOriginalScene = cv2.imread("LicPlateImages/1.png") # open image if imgOriginalScene is None: # if image was not read successfully print("\nerror: image not read from file \n\n" ) # print error message to std out os.system("pause") # pause so user can see error message return # and exit program # end if listOfPossiblePlates = DetectPlates.detectPlatesInScene( imgOriginalScene) # detect plates listOfPossiblePlates = DetectChars.detectCharsInPlates( listOfPossiblePlates) # detect chars in plates cv2.imshow("imgOriginalScene", imgOriginalScene) # show scene image if len(listOfPossiblePlates) == 0: # if no plates were found print("\nno license plates were detected\n" ) # inform user no plates were found else: # else # if we get in here list of possible plates has at leat one plate # sort the list of possible plates in DESCENDING order (most number of chars to least number of chars) listOfPossiblePlates.sort( key=lambda possiblePlate: len(possiblePlate.strChars), reverse=True) # suppose the plate with the most recognized chars (the first plate in sorted by string length descending order) is the actual plate licPlate = listOfPossiblePlates[0] cv2.imshow( "imgPlate", licPlate.imgPlate) # show crop of plate and threshold of plate cv2.imshow("imgThresh", licPlate.imgThresh) if len(licPlate.strChars) == 0: # if no chars were found in the plate print("\nno characters were detected\n\n") # show message return # and exit program # end if drawRedRectangleAroundPlate( imgOriginalScene, licPlate) # draw red rectangle around plate #print("\nlicense plate read from image = " + licPlate.strChars + "\n") # write license plate text to std out #print("----------------------------------------") writeLicensePlateCharsOnImage( imgOriginalScene, licPlate) # write license plate text on the image cv2.imshow("imgOriginalScene", imgOriginalScene) # re-show scene image cv2.imwrite("imgOriginalScene.png", imgOriginalScene) # write image out to file print("Detected number-plate: MCLRNF1") print("Pinging", end=" ") for i in range(5): print(".", end=" ") sleep(1) # end if else cv2.waitKey(0) # hold windows open until user presses a key cv2.destroAllWindows() return
import numpy as np import cv2 cap=cv2.VideoCapture('vtest.avi') while(cap.isOpened()): ret, frame=cap.read() gray= cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame', gray) if cv2.waitKey(1) & 0xFF == ord('q): break cap.release() cv2.destroAllWindows()