Exemple #1
0
    def test_simple(self):
        img = self.get_sample('stitching/a1.png')
        finder= cv.ORB.create()
        imgFea = cv.detail.computeImageFeatures2(finder,img)
        self.assertIsNotNone(imgFea)

        matcher = cv.detail_BestOf2NearestMatcher(False, 0.3)
        self.assertIsNotNone(matcher)
        matcher = cv.detail_AffineBestOf2NearestMatcher(False, False, 0.3)
        self.assertIsNotNone(matcher)
        matcher = cv.detail_BestOf2NearestRangeMatcher(2, False, 0.3)
        self.assertIsNotNone(matcher)
        estimator = cv.detail_AffineBasedEstimator()
        self.assertIsNotNone(estimator)
        estimator = cv.detail_HomographyBasedEstimator()
        self.assertIsNotNone(estimator)

        adjuster = cv.detail_BundleAdjusterReproj()
        self.assertIsNotNone(adjuster)
        adjuster = cv.detail_BundleAdjusterRay()
        self.assertIsNotNone(adjuster)
        adjuster = cv.detail_BundleAdjusterAffinePartial()
        self.assertIsNotNone(adjuster)
        adjuster = cv.detail_NoBundleAdjuster()
        self.assertIsNotNone(adjuster)

        compensator=cv.detail.ExposureCompensator_createDefault(cv.detail.ExposureCompensator_NO)
        self.assertIsNotNone(compensator)
        compensator=cv.detail.ExposureCompensator_createDefault(cv.detail.ExposureCompensator_GAIN)
        self.assertIsNotNone(compensator)
        compensator=cv.detail.ExposureCompensator_createDefault(cv.detail.ExposureCompensator_GAIN_BLOCKS)
        self.assertIsNotNone(compensator)

        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
        self.assertIsNotNone(seam_finder)
        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
        self.assertIsNotNone(seam_finder)
        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM)
        self.assertIsNotNone(seam_finder)

        seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR")
        self.assertIsNotNone(seam_finder)
        seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR_GRAD")
        self.assertIsNotNone(seam_finder)
        seam_finder = cv.detail_DpSeamFinder("COLOR")
        self.assertIsNotNone(seam_finder)
        seam_finder = cv.detail_DpSeamFinder("COLOR_GRAD")
        self.assertIsNotNone(seam_finder)

        blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
        self.assertIsNotNone(blender)
        blender = cv.detail.Blender_createDefault(cv.detail.Blender_FEATHER)
        self.assertIsNotNone(blender)
        blender = cv.detail.Blender_createDefault(cv.detail.Blender_MULTI_BAND)
        self.assertIsNotNone(blender)

        timelapser = cv.detail.Timelapser_createDefault(cv.detail.Timelapser_AS_IS);
        self.assertIsNotNone(timelapser)
        timelapser = cv.detail.Timelapser_createDefault(cv.detail.Timelapser_CROP);
        self.assertIsNotNone(timelapser)
Exemple #2
0
 def get_matcher(self):
     if self.matcher_type == 'affine':
         matcher = cv.detail_AffineBestOf2NearestMatcher(
             False, self.try_cuda, self.match_conf)
     else:
         matcher = cv.detail.BestOf2NearestMatcher_create(
             self.try_cuda, self.match_conf)
     return matcher
Exemple #3
0
def matcher_type_check(matcher_type, range_width, try_cuda, match_conf):
    matcher = None
    if matcher_type == "affine":
        matcher = cv2.detail_AffineBestOf2NearestMatcher(
            False, try_cuda, match_conf)
    elif range_width == -1:
        matcher = cv2.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
    else:
        matcher = cv2.detail.BestOf2NearestRangeMatcher_create(
            range_width, try_cuda, match_conf)
    return matcher
Exemple #4
0
    def __init__(self,
                 matcher_type=DEFAULT_MATCHER,
                 range_width=DEFAULT_RANGE_WIDTH,
                 **kwargs):

        if matcher_type == "affine":
            """https://docs.opencv.org/master/d3/dda/classcv_1_1detail_1_1AffineBestOf2NearestMatcher.html"""  # noqa
            self.matcher = cv.detail_AffineBestOf2NearestMatcher(**kwargs)
        elif range_width == -1:
            """https://docs.opencv.org/master/d4/d26/classcv_1_1detail_1_1BestOf2NearestMatcher.html"""  # noqa
            self.matcher = cv.detail.BestOf2NearestMatcher_create(**kwargs)
        else:
            """https://docs.opencv.org/master/d8/d72/classcv_1_1detail_1_1BestOf2NearestRangeMatcher.html"""  # noqa
            self.matcher = cv.detail.BestOf2NearestRangeMatcher_create(
                range_width, **kwargs)
Exemple #5
0
def get_matcher(args):
    try_cuda = args.try_cuda
    matcher_type = args.matcher
    if args.match_conf is None:
        if args.features == 'orb':
            match_conf = 0.3
        else:
            match_conf = 0.65
    else:
        match_conf = args.match_conf
    range_width = args.rangewidth
    if matcher_type == "affine":
        matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
    elif range_width == -1:
        matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
    else:
        matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf)
    return matcher
Exemple #6
0
def main():
    img_names = [r'C:\Scratch\IPA_Data\FullRes\a0_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a1_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a2_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a3_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a4_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a5_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a6_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a7_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a8_nor.tif',
                 r'C:\Scratch\IPA_Data\FullRes\a9_nor.tif']
                 # r'C:\Scratch\IPA_Data\FullRes\b0_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b1_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b2_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b3_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b4_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b5_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b6_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b7_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b8_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\b9_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c0_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c1_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c2_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c3_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c4_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c5_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c6_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c7_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c8_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\c9_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d0_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d1_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d2_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d3_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d4_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d5_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d6_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d7_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d8_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\d9_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e0_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e1_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e2_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e3_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e4_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e5_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e6_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e7_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e8_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\e9_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f0_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f1_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f2_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f3_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f4_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f5_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f6_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f7_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f8_nor.tif',
                 # r'C:\Scratch\IPA_Data\FullRes\f9_nor.tif']
    print(img_names)

    # ================ DEFINE ALL PARAMETERS ================
    # Flags
    try_cuda = False
    work_megapix = 8
    features_type = "surf"
    matcher_type = "affine"
    estimator_type = "affine"
    match_conf = 0.75
    conf_thresh = 1.0

    ba_cost_func = "affine"
    ba_refine_mask = "xxxxx"
    wave_correct = "vert"
    save_graph_var = None

    # Compositing Flags
    warp_type = "affine"
    seam_megapix = 2.0
    seam_find_type = "gc_color"
    compose_megapix = -1
    expos_comp = "no"
    expos_comp_nr_feeds = 1
    # expos_comp_nr_filtering = 2
    expos_comp_block_size = 32
    blend_type = "multiband"
    blend_strength = 5
    result_name = "test_result_3.png"
    timelapse_name = None
    range_width = 8

    # Check if there is to be wave correction, then set the boolean check value
    if wave_correct == 'no':
        do_wave_correct = False
    else:
        do_wave_correct = True

    # Check if there is to be a graph file created
    if save_graph_var is None:
        save_graph = False
    else:
        save_graph = True
        save_graph_to = save_graph_var

    # Check if the exposure is to be compensated, if so define which compensator to use
    if expos_comp == 'no':
        expos_comp_type = cv.detail.ExposureCompensator_NO
    elif expos_comp == 'gain':
        expos_comp_type = cv.detail.ExposureCompensator_GAIN
    elif expos_comp == 'gain_blocks':
        expos_comp_type = cv.detail.ExposureCompensator_GAIN_BLOCKS
    elif expos_comp == 'channel':
        expos_comp_type = cv.detail.ExposureCompensator_CHANNELS
    elif expos_comp == 'channel_blocks':
        expos_comp_type = cv.detail.ExposureCompensator_CHANNELS_BLOCKS
    else:
        print("Bad exposure compensation method")
        exit()

    # Check if the timelapse is to be output. AKA the intermediate layers
    if timelapse_name is not None:
        timelapse = True
        if timelapse_name == "as_is":
            timelapse_type = cv.detail.Timelapser_AS_IS
        elif timelapse_name == "crop":
            timelapse_type = cv.detail.Timelapser_CROP
        else:
            print("Bad timelapse method")
            exit()
    else:
        timelapse = False

    # Check the feature type to be used and create the finder class that will be used
    # TODO - See if there other feature detectors which are more suitable
    if features_type == 'orb':
        finder = cv.ORB.create(500, 1.1, 8, 50, 0, 2, 0, 50, 20)
    elif features_type == 'surf':
        finder = cv.xfeatures2d_SURF.create(100, 8, 4, False, False)
    elif features_type == 'sift':
        finder = cv.xfeatures2d_SIFT.create()
    else:
        print("Unknown descriptor type")
        exit()

    # Pre-allocate other variables to work with
    seam_work_aspect = 1    # Seam aspect ratio
    full_img_sizes = []     # Size of full images
    features = []           # Array for storing features
    images = []             # Array for storing information about images

    is_work_scale_set = False       # Bool for working image scaling
    is_seam_scale_set = False       # Bool for seams scaling
    is_compose_scale_set = False    # Bool for composition image scaling

    # Iterate through the image names
    for name in img_names:
        # Reads the image into a numpy array
        full_img = cv.imread(cv.samples.findFile(name))

        # Check if the file could be read successfully
        if full_img is None:
            print("Cannot read image ", name)
            exit()

        # Add image size to the list ...
        # TODO Could change this to be constant...
        full_img_sizes.append((full_img.shape[1], full_img.shape[0]))

        # Define the working scale the images should be used based on the number of megapixel entered
        if work_megapix < 0:
            # If a negative value entered, use its true scale
            img = full_img
            work_scale = 1
            is_work_scale_set = True
        else:
            if is_work_scale_set is False:
                work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
                is_work_scale_set = True
            img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT)

        # Define the scale for the seams that they will be processed
        if is_seam_scale_set is False:
            seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
            seam_work_aspect = seam_scale / work_scale
            is_seam_scale_set = True

        # Get the image features for this image
        img_fea = cv.detail.computeImageFeatures2(finder, img)

        test_feat_img = cv.drawKeypoints(img, img_fea.getKeypoints(), None, (255, 0, 0), 4)
        cv.namedWindow('image', cv.WINDOW_NORMAL)
        cv.imshow('image', test_feat_img)
        cv.resizeWindow('image', int(full_img_sizes[0][0] / 10), int(full_img_sizes[0][1] / 10))
        cv.waitKey()

        features.append(img_fea)
        img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT)
        images.append(img)

    # Define the matcher type to be used for the features
    if matcher_type == "affine":
        matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
    elif range_width == -1:
        matcher = cv.detail_BestOf2NearestMatcher(try_cuda, match_conf)
    else:
        matcher = cv.detail_BestOf2NearestRangeMatcher(range_width, try_cuda, match_conf)

    # Apply the matcher to the features, obtaining matches between them
    p = matcher.apply2(features)
    # Frees unused memory
    matcher.collectGarbage()

    # Save the graph if chosen
    if save_graph:
        f = open(save_graph_to, "w")
        f.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))
        f.close()

    # Remove matches if not above a confidence threshold
    indices = cv.detail.leaveBiggestComponent(features, p, match_conf)

    # Pre-allocate
    img_subset = []                 # Array to hold subset of images numpy arrays?
    img_names_subset = []           # Array to list the names of subset images
    full_img_sizes_subset = []      # Sizes of the images in their full resolution within the subset
    num_images = len(indices)       # Number of images as determined by the thresholding of the feature matches

    # TODO this appears to be the issue running into before... the matching beforehand is producing 0 results
    # Itearte through the images that were matched and get lists of matches/images
    for i in range(num_images):
        img_names_subset.append(img_names[indices[i, 0]])               # Append the names
        img_subset.append(images[indices[i, 0]])                        # Append the actual image arrays
        full_img_sizes_subset.append(full_img_sizes[indices[i, 0]])     # Append their sizes

    # Update the list of images and image names
    images = img_subset
    img_names = img_names_subset
    full_img_sizes = full_img_sizes_subset

    # Get new number of matched images (shouldn't change with the mosaicing project
    num_images = len(img_names)

    # Do a simple test to check if sufficient images
    if num_images < 2:
        print("Need more images")
        exit()

    # Generate the estimator based on what was set to determine approximate relative orientation parameters
    if estimator_type == "affine":
        estimator = cv.detail_AffineBasedEstimator()
    else:
        estimator = cv.detail_HomographyBasedEstimator()
    b, cameras = estimator.apply(features, p, None)

    # Check if estimation passed based on the boolean 'b'
    if not b:
        print("Homography estimation failed.")
        exit()

    # Iterate through the camera orientations computed
    for cam in cameras:
        # Convert the camera rotation matrix to float 32
        cam.R = cam.R.astype(np.float32)

    # TODO read up on the documentation here
    # Define bundle adjustment cost function
    if ba_cost_func == "reproj":
        adjuster = cv.detail_BundleAdjusterReproj()
    elif ba_cost_func == "ray":
        adjuster = cv.detail_BundleAdjusterRay()
    elif ba_cost_func == "affine":
        adjuster = cv.detail_BundleAdjusterAffinePartial()
    elif ba_cost_func == "no":
        adjuster = cv.detail_NoBundleAdjuster()
    else:
        print("Unknown bundle adjustment cost function: ", ba_cost_func)
        exit()

    # Set the threshold for the adjuster
    adjuster.setConfThresh(1)
    # Pre-allocate array of the mask to be applied to determine which camera parameters to compute
    refine_mask = np.zeros((3, 3), np.uint8)

    # Determine which parameters to compute? Or vice versa... not compute
    # TODO check this
    if ba_refine_mask[0] == 'x':
        refine_mask[0, 0] = 1
    if ba_refine_mask[1] == 'x':
        refine_mask[0, 1] = 1
    if ba_refine_mask[2] == 'x':
        refine_mask[0, 2] = 1
    if ba_refine_mask[3] == 'x':
        refine_mask[1, 1] = 1
    if ba_refine_mask[4] == 'x':
        refine_mask[1, 2] = 1

    # Apply the refinement mask to the adjuster
    adjuster.setRefinementMask(refine_mask)

    # Recompute the camera orientation parameters with the refinement mask
    b, cameras = adjuster.apply(features, p, cameras)

    # Check if the parameters adjusted correctly
    if not b:
        print("Camera parameters adjusting failed.")
        exit()

    # Get list of focal lengths to scale images accordingly...
    # TODO probably remove this scaling as not required for this project, thus warped_image_scale should stay = 1
    focals = []
    for cam in cameras:
        focals.append(cam.focal)
    sorted(focals)
    if len(focals) % 2 == 1:
        warped_image_scale = focals[len(focals) // 2]
    else:
        warped_image_scale = (focals[len(focals) // 2]+focals[len(focals) // 2-1])/2

    # Perform the wave correction
    # TODO adjust this... only performs a horizontal correction, need to implement a vertical correction. Possibly both.
    #   Potentially not required at all if the estimation of camera parameter bundle adjustment is performed well
    if do_wave_correct:
        rmats = []
        for cam in cameras:
            rmats.append(np.copy(cam.R))

        if wave_correct == 'vert':
            rmats = cv.detail.waveCorrect(rmats, cv.detail.WAVE_CORRECT_VERT)
        elif wave_correct == 'horiz':
            rmats = cv.detail.waveCorrect(rmats, cv.detail.WAVE_CORRECT_HORIZ)

        for idx, cam in enumerate(cameras):
            cam.R = rmats[idx]

    # Pre-allocation
    corners = []            # Dimensions of warped images
    masks_warped = []       # The masking regions of the warped areas
    images_warped = []      # the images warped
    sizes = []              # Sizes of ....?
    masks = []              # Masks for the seams ...?

    # Iterate through the images creating 'i' as the index number and appending the pre-allocated mask
    for i in range(0, num_images):
        um = cv.UMat(255*np.ones((images[i].shape[0], images[i].shape[1]), np.uint8))
        masks.append(um)

    # This creates the warper to be used to distort the images according to the layout or shape they're to be stitched
    warper = cv.PyRotationWarper(warp_type, warped_image_scale*seam_work_aspect)

    # Iterate through the images to create the seams
    for idx in range(0, num_images):
        # Get the respective camera matrix
        mat_k = cameras[idx].K().astype(np.float32)

        # Scale the K matrix for the seam aspect scale
        mat_k[0, 0] *= seam_work_aspect
        mat_k[0, 2] *= seam_work_aspect
        mat_k[1, 1] *= seam_work_aspect
        mat_k[1, 2] *= seam_work_aspect

        # Project the image into the warping shape
        # TODO Not sure if we actually need the images warped. If the rotation and translation should suffice
        corner, image_wp = warper.warp(images[idx], mat_k, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT)
        corners.append(corner)
        sizes.append((image_wp.shape[1], image_wp.shape[0]))
        images_warped.append(image_wp)

        # Warp the masks as well
        p, mask_wp = warper.warp(masks[idx], mat_k, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT)
        masks_warped.append(mask_wp.get())

    # Pre-allocation and conversion of the images warped images to floats
    images_warped_f = []
    for img in images_warped:
        imgf = img.astype(np.float32)
        images_warped_f.append(imgf)

    # If exposure correction required.... Shouldn't although there is one bad image in there so quite possibly
    if cv.detail.ExposureCompensator_CHANNELS == expos_comp_type:
        compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds)
    #    compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
    elif cv.detail.ExposureCompensator_CHANNELS_BLOCKS == expos_comp_type:
        compensator = cv.detail_BlocksChannelsCompensator(
            expos_comp_block_size, expos_comp_block_size, expos_comp_nr_feeds)
    #    compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
    else:
        compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type)

    # Apply the exposure compensator? Or set it up at least
    compensator.feed(corners=corners, images=images_warped, masks=masks_warped)

    # Define the type of seam finder to be used
    if seam_find_type == "no":
        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
    elif seam_find_type == "voronoi":
        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM)
    elif seam_find_type == "gc_color":
        seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR")
    elif seam_find_type == "gc_colorgrad":
        seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR_GRAD")
    elif seam_find_type == "dp_color":
        seam_finder = cv.detail_DpSeamFinder("COLOR")
    elif seam_find_type == "dp_colorgrad":
        seam_finder = cv.detail_DpSeamFinder("COLOR_GRAD")
    if seam_finder is None:
        print("Can't create the following seam finder ", seam_find_type)
        exit()

    # Find the seams
    # TODO potentially try using the non-warped images
    seam_finder.find(images_warped_f, corners, masks_warped)

    # Clear the variables from memory / use later
    imgListe = []
    images_warped = []
    images_warped_f = []
    masks = []

    # Clear or pre-allocate variables
    compose_scale = 1
    corners = []
    sizes = []
    blender = None
    timelapser = None
    compose_work_aspect = 1

    # Iterate through all the images again
    for idx, name in enumerate(img_names):
        # Read in image and get the composition scale. Should be left to 1...
        # TODO check the composition scale and whether this needs to be scaled
        full_img = cv.imread(name)

        # Compute the composition scale, work aspect ratio, warped image scale and create a warper to scale
        if not is_compose_scale_set:
            if compose_megapix > 0:
                compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
            is_compose_scale_set = True
            compose_work_aspect = compose_scale / work_scale
            warped_image_scale *= compose_work_aspect
            warper = cv.PyRotationWarper(warp_type, warped_image_scale)

            for i in range(0, len(img_names)):
                # Adjust the camera parameters based on the composition work aspect ratio
                cameras[i].focal *= compose_work_aspect
                cameras[i].ppx *= compose_work_aspect
                cameras[i].ppy *= compose_work_aspect

                # Compute the size of the scaled full image
                sz = (full_img_sizes[i][0] * compose_scale, full_img_sizes[i][1]*compose_scale)

                # Get the intrinsic camera matrix
                mat_k = cameras[i].K().astype(np.float32)

                # Generate a warper for the rotation and intrinsic matrix
                # TODO this could possibly be just the rotation matrix
                #   One possibility this isn't working is due to it should be translating images...
                roi = warper.warpRoi(sz, mat_k, cameras[i].R)

                # Get the corners from the output parameters
                corners.append(roi[0:2])
                # Get the sizes of the output parameters
                sizes.append(roi[2:4])

        # Scale the image to a size greater than the full resolution, otherwise leave as is
        if abs(compose_scale - 1) > 1e-1:
            img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, interpolation=cv.INTER_LINEAR_EXACT)
        else:
            img = full_img

        # Create a tuple of the image size
        img_size = (img.shape[1], img.shape[0])

        # Convert the intrinsic matrix to float 32
        mat_k = cameras[idx].K().astype(np.float32)

        # Warp the images accordingly...
        # TODO look at the interpolation and border values
        corner, image_warped = warper.warp(img, mat_k, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT)

        # Define the masks and warp them as well to the same shape
        mask = 255*np.ones((img.shape[0], img.shape[1]), np.uint8)
        p, mask_warped = warper.warp(mask, mat_k, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT)

        # Apply the exposure compensation
        compensator.apply(idx, corners[idx], image_warped, mask_warped)

        # Convert the images back to integer for minimal memory use
        image_warped_s = image_warped.astype(np.int16)
        image_warped = []   # Clear variable

        # Dilate the warped mask image
        dilated_mask = cv.dilate(masks_warped[idx], None)

        # Resize the dilated mask to create the seam mask
        seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT)

        # Get the output seam
        mask_warped = cv.bitwise_and(seam_mask, mask_warped)

        # If the blender object hasn't been created yet
        if blender is None and not timelapse:
            blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
            dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes)
            # Get the blend width
            blend_width = np.sqrt(dst_sz[2]*dst_sz[3]) * blend_strength / 100
            # Check if a width is computed. Based on the blend strength
            if blend_width < 1:
                blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)

            # Create a multiband blender
            elif blend_type == "multiband":
                blender = cv.detail_MultiBandBlender()
                blender.setNumBands((np.log(blend_width)/np.log(2.) - 1.).astype(np.int))

            # Create a feather blender
            elif blend_type == "feather":
                blender = cv.detail_FeatherBlender()
                blender.setSharpness(1./blend_width)

            # Prepare the blender based on the distance
            blender.prepare(dst_sz)

        # If a timelapse type is passed, create the timelapser object
        elif timelapser is None and timelapse:
            timelapser = cv.detail.Timelapser_createDefault(timelapse_type)
            timelapser.initialize(corners, sizes)

        # If the timelapse parameter is passed
        if timelapse:
            # Initialise an array of ones of the right shape
            matones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8)

            # Adds the warped image into the list
            timelapser.process(image_warped_s, matones, corners[idx])

            # Get the index for where the file name starts
            pos_s = img_names[idx].rfind("/")

            # Get the fixed file name
            if pos_s == -1:
                fixed_file_name = "fixed_" + img_names[idx]
            else:
                fixed_file_name = img_names[idx][:pos_s + 1]+"fixed_" + img_names[idx][pos_s + 1:]

            # Write the temporary partial image
            cv.imwrite(fixed_file_name, timelapser.getDst())
        else:
            # Pass the warped image into the blender
            blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx])

    # If the timelapse parameter is not passed
    if not timelapse:
        # Pre-allocate the results
        result = None
        result_mask = None

        # Get the blended results
        result, result_mask = blender.blend(result, result_mask)

        # Output the final result
        cv.imwrite(result_name, result)

        # Make the image shape fit into the window
        zoomx = 600.0 / result.shape[1]

        # Show the final output
        dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
        dst = cv.resize(dst, dsize=None, fx=zoomx, fy=zoomx)
        cv.imshow(result_name, dst)
        cv.waitKey()

    print('Done')
Exemple #7
0
def main():
    args = parser.parse_args()
    img_names=args.img_names
    print(img_names)
    preview = args.preview
    try_cuda = args.try_cuda
    work_megapix = args.work_megapix
    seam_megapix = args.seam_megapix
    compose_megapix = args.compose_megapix
    conf_thresh = args.conf_thresh
    features_type = args.features
    matcher_type = args.matcher
    estimator_type = args.estimator
    ba_cost_func = args.ba
    ba_refine_mask = args.ba_refine_mask
    wave_correct = args.wave_correct
    if wave_correct=='no':
        do_wave_correct= False
    else:
        do_wave_correct=True
    if args.save_graph is None:
        save_graph = False
    else:
        save_graph =True
        save_graph_to = args.save_graph
    warp_type = args.warp
    if args.expos_comp=='no':
        expos_comp_type = cv.detail.ExposureCompensator_NO
    elif  args.expos_comp=='gain':
        expos_comp_type = cv.detail.ExposureCompensator_GAIN
    elif  args.expos_comp=='gain_blocks':
        expos_comp_type = cv.detail.ExposureCompensator_GAIN_BLOCKS
    elif  args.expos_comp=='channel':
        expos_comp_type = cv.detail.ExposureCompensator_CHANNELS
    elif  args.expos_comp=='channel_blocks':
        expos_comp_type = cv.detail.ExposureCompensator_CHANNELS_BLOCKS
    else:
        print("Bad exposure compensation method")
        exit()
    expos_comp_nr_feeds = args.expos_comp_nr_feeds
    expos_comp_nr_filtering = args.expos_comp_nr_filtering
    expos_comp_block_size = args.expos_comp_block_size
    match_conf = args.match_conf
    seam_find_type = args.seam
    blend_type = args.blend
    blend_strength = args.blend_strength
    result_name = args.output
    if args.timelapse is not None:
        timelapse = True
        if args.timelapse=="as_is":
            timelapse_type = cv.detail.Timelapser_AS_IS
        elif args.timelapse=="crop":
            timelapse_type = cv.detail.Timelapser_CROP
        else:
            print("Bad timelapse method")
            exit()
    else:
        timelapse= False
    range_width = args.rangewidth
    if features_type=='orb':
        finder= cv.ORB.create()
    elif features_type=='surf':
        finder= cv.xfeatures2d_SURF.create()
    elif features_type=='sift':
        finder= cv.xfeatures2d_SIFT.create()
    else:
        print ("Unknown descriptor type")
        exit()
    seam_work_aspect = 1
    full_img_sizes=[]
    features=[]
    images=[]
    is_work_scale_set = False
    is_seam_scale_set = False
    is_compose_scale_set = False;
    for name in img_names:
        full_img = cv.imread(cv.samples.findFile(name))
        if full_img is None:
            print("Cannot read image ", name)
            exit()
        full_img_sizes.append((full_img.shape[1],full_img.shape[0]))
        if work_megapix < 0:
            img = full_img
            work_scale = 1
            is_work_scale_set = True
        else:
            if is_work_scale_set is False:
                work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
                is_work_scale_set = True
            img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT)
        if is_seam_scale_set is False:
            seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
            seam_work_aspect = seam_scale / work_scale
            is_seam_scale_set = True
        imgFea= cv.detail.computeImageFeatures2(finder,img)
        features.append(imgFea)
        img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT)
        images.append(img)
    if matcher_type== "affine":
        matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
    elif range_width==-1:
        matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
    else:
        matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf)
    p=matcher.apply2(features)
    matcher.collectGarbage()
    if save_graph:
        f = open(save_graph_to,"w")
        f.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))
        f.close()
    indices=cv.detail.leaveBiggestComponent(features,p,0.3)
    img_subset =[]
    img_names_subset=[]
    full_img_sizes_subset=[]
    num_images=len(indices)
    for i in range(len(indices)):
        img_names_subset.append(img_names[indices[i,0]])
        img_subset.append(images[indices[i,0]])
        full_img_sizes_subset.append(full_img_sizes[indices[i,0]])
    images = img_subset;
    img_names = img_names_subset;
    full_img_sizes = full_img_sizes_subset;
    num_images = len(img_names)
    if num_images < 2:
        print("Need more images")
        exit()

    if estimator_type == "affine":
        estimator = cv.detail_AffineBasedEstimator()
    else:
        estimator = cv.detail_HomographyBasedEstimator()
    b, cameras =estimator.apply(features,p,None)
    if not b:
        print("Homography estimation failed.")
        exit()
    for cam in cameras:
        cam.R=cam.R.astype(np.float32)

    if ba_cost_func == "reproj":
        adjuster = cv.detail_BundleAdjusterReproj()
    elif ba_cost_func == "ray":
        adjuster = cv.detail_BundleAdjusterRay()
    elif ba_cost_func == "affine":
        adjuster = cv.detail_BundleAdjusterAffinePartial()
    elif ba_cost_func == "no":
        adjuster = cv.detail_NoBundleAdjuster()
    else:
        print( "Unknown bundle adjustment cost function: ", ba_cost_func )
        exit()
    adjuster.setConfThresh(1)
    refine_mask=np.zeros((3,3),np.uint8)
    if ba_refine_mask[0] == 'x':
        refine_mask[0,0] = 1
    if ba_refine_mask[1] == 'x':
        refine_mask[0,1] = 1
    if ba_refine_mask[2] == 'x':
        refine_mask[0,2] = 1
    if ba_refine_mask[3] == 'x':
        refine_mask[1,1] = 1
    if ba_refine_mask[4] == 'x':
        refine_mask[1,2] = 1
    adjuster.setRefinementMask(refine_mask)
    b,cameras = adjuster.apply(features,p,cameras)
    if not b:
        print("Camera parameters adjusting failed.")
        exit()
    focals=[]
    for cam in cameras:
        focals.append(cam.focal)
    sorted(focals)
    if len(focals)%2==1:
        warped_image_scale = focals[len(focals) // 2]
    else:
        warped_image_scale = (focals[len(focals) // 2]+focals[len(focals) // 2-1])/2
    if do_wave_correct:
        rmats=[]
        for cam in cameras:
            rmats.append(np.copy(cam.R))
        rmats	=	cv.detail.waveCorrect(	rmats,  cv.detail.WAVE_CORRECT_HORIZ)
        for idx,cam in enumerate(cameras):
            cam.R = rmats[idx]
    corners=[]
    mask=[]
    masks_warped=[]
    images_warped=[]
    sizes=[]
    masks=[]
    for i in range(0,num_images):
        um=cv.UMat(255*np.ones((images[i].shape[0],images[i].shape[1]),np.uint8))
        masks.append(um)

    warper = cv.PyRotationWarper(warp_type,warped_image_scale*seam_work_aspect) # warper peut etre nullptr?
    for idx in range(0,num_images):
        K = cameras[idx].K().astype(np.float32)
        swa = seam_work_aspect
        K[0,0] *= swa
        K[0,2] *= swa
        K[1,1] *= swa
        K[1,2] *= swa
        corner,image_wp =warper.warp(images[idx],K,cameras[idx].R,cv.INTER_LINEAR, cv.BORDER_REFLECT)
        corners.append(corner)
        sizes.append((image_wp.shape[1],image_wp.shape[0]))
        images_warped.append(image_wp)

        p,mask_wp =warper.warp(masks[idx],K,cameras[idx].R,cv.INTER_NEAREST, cv.BORDER_CONSTANT)
        masks_warped.append(mask_wp.get())
    images_warped_f=[]
    for img in images_warped:
        imgf=img.astype(np.float32)
        images_warped_f.append(imgf)
    if cv.detail.ExposureCompensator_CHANNELS == expos_comp_type:
        compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds)
    #    compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
    elif cv.detail.ExposureCompensator_CHANNELS_BLOCKS == expos_comp_type:
        compensator=cv.detail_BlocksChannelsCompensator(expos_comp_block_size, expos_comp_block_size,expos_comp_nr_feeds)
    #    compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
    else:
        compensator=cv.detail.ExposureCompensator_createDefault(expos_comp_type)
    compensator.feed(corners=corners, images=images_warped, masks=masks_warped)
    if seam_find_type == "no":
        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
    elif seam_find_type == "voronoi":
        seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM);
    elif seam_find_type == "gc_color":
        seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR")
    elif seam_find_type == "gc_colorgrad":
        seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR_GRAD")
    elif seam_find_type == "dp_color":
        seam_finder = cv.detail_DpSeamFinder("COLOR")
    elif seam_find_type == "dp_colorgrad":
        seam_finder = cv.detail_DpSeamFinder("COLOR_GRAD")
    if seam_finder is None:
        print("Can't create the following seam finder ",seam_find_type)
        exit()
    seam_finder.find(images_warped_f, corners,masks_warped )
    imgListe=[]
    compose_scale=1
    corners=[]
    sizes=[]
    images_warped=[]
    images_warped_f=[]
    masks=[]
    blender= None
    timelapser=None
    compose_work_aspect=1
    for idx,name in enumerate(img_names): # https://github.com/opencv/opencv/blob/master/samples/cpp/stitching_detailed.cpp#L725 ?
        full_img  = cv.imread(name)
        if not is_compose_scale_set:
            if compose_megapix > 0:
                compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
            is_compose_scale_set = True;
            compose_work_aspect = compose_scale / work_scale;
            warped_image_scale *= compose_work_aspect
            warper =  cv.PyRotationWarper(warp_type,warped_image_scale)
            for i in range(0,len(img_names)):
                cameras[i].focal *= compose_work_aspect
                cameras[i].ppx *= compose_work_aspect
                cameras[i].ppy *= compose_work_aspect
                sz = (full_img_sizes[i][0] * compose_scale,full_img_sizes[i][1]* compose_scale)
                K = cameras[i].K().astype(np.float32)
                roi = warper.warpRoi(sz, K, cameras[i].R);
                corners.append(roi[0:2])
                sizes.append(roi[2:4])
        if abs(compose_scale - 1) > 1e-1:
            img =cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, interpolation=cv.INTER_LINEAR_EXACT)
        else:
            img = full_img;
        img_size = (img.shape[1],img.shape[0]);
        K=cameras[idx].K().astype(np.float32)
        corner,image_warped =warper.warp(img,K,cameras[idx].R,cv.INTER_LINEAR, cv.BORDER_REFLECT)
        mask =255*np.ones((img.shape[0],img.shape[1]),np.uint8)
        p,mask_warped =warper.warp(mask,K,cameras[idx].R,cv.INTER_NEAREST, cv.BORDER_CONSTANT)
        compensator.apply(idx,corners[idx],image_warped,mask_warped)
        image_warped_s = image_warped.astype(np.int16)
        image_warped=[]
        dilated_mask = cv.dilate(masks_warped[idx],None)
        seam_mask = cv.resize(dilated_mask,(mask_warped.shape[1],mask_warped.shape[0]),0,0,cv.INTER_LINEAR_EXACT)
        mask_warped = cv.bitwise_and(seam_mask,mask_warped)
        if blender==None and not timelapse:
            blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
            dst_sz = cv.detail.resultRoi(corners=corners,sizes=sizes)
            blend_width = np.sqrt(dst_sz[2]*dst_sz[3]) * blend_strength / 100
            if blend_width < 1:
                blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
            elif blend_type == "multiband":
                blender = cv.detail_MultiBandBlender()
                blender.setNumBands((np.log(blend_width)/np.log(2.) - 1.).astype(np.int))
            elif blend_type == "feather":
                blender = cv.detail_FeatherBlender()
                blender.setSharpness(1./blend_width)
            blender.prepare(dst_sz)
        elif timelapser==None  and timelapse:
            timelapser = cv.detail.Timelapser_createDefault(timelapse_type)
            timelapser.initialize(corners, sizes)
        if timelapse:
            matones=np.ones((image_warped_s.shape[0],image_warped_s.shape[1]), np.uint8)
            timelapser.process(image_warped_s, matones, corners[idx])
            pos_s = img_names[idx].rfind("/");
            if pos_s == -1:
                fixedFileName = "fixed_" + img_names[idx];
            else:
                fixedFileName = img_names[idx][:pos_s + 1 ]+"fixed_" + img_names[idx][pos_s + 1: ]
            cv.imwrite(fixedFileName, timelapser.getDst())
        else:
            blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx])
    if not timelapse:
        result=None
        result_mask=None
        result,result_mask = blender.blend(result,result_mask)
        cv.imwrite(result_name,result)
        zoomx = 600.0 / result.shape[1]
        dst=cv.normalize(src=result,dst=None,alpha=255.,norm_type=cv.NORM_MINMAX,dtype=cv.CV_8U)
        dst=cv.resize(dst,dsize=None,fx=zoomx,fy=zoomx)
        cv.imshow(result_name,dst)
        cv.waitKey()

    print('Done')
Exemple #8
0
def main(argv):
    exp_name = str(time.time())
    opts, args = getopt.getopt(argv, "n:")
    for opt, arg in opts:
        if opt in ("-n"):
            exp_name = arg
    dataset_path = 'b0-2014-07-11-11-00-49-1OG'  #'b0-2014-07-21-12-55-35-EG' #'b2-2015-09-01-11-55-40-UG' #'picdata' #'picdata_120'
    MaxFrameId = 142  #214 #243 #418 #143
    SubmapLength = 120  #180 #120
    Resolution = 0.05

    print("OK")

    frame_poses = []
    submap_poses = []
    center_poses = []
    for frameIndex in range(MaxFrameId + 1):
        mapinfo_fname_tmp = "mapinfo_{}_{}.txt".format(frameIndex,
                                                       SubmapLength)
        mapinfo_fname = os.path.join(dataset_path, mapinfo_fname_tmp)
        if not os.path.exists(mapinfo_fname):
            assert False, "file {} not exist".format(mapinfo_fname)
        framePose, submapPose = readMapinfo(mapinfo_fname)
        frameTf = msg2RigidTransform(framePose, "map",
                                     "base{}".format(frameIndex))
        submapTf = msg2RigidTransform(submapPose, "map",
                                      "origin{}".format(frameIndex))
        frame_poses.append(frameTf)
        submap_poses.append(submapTf)

    center_xy = np.zeros((MaxFrameId + 1, 2))
    feature_list = []
    kaze = cv2.KAZE_create()
    akaze = cv2.AKAZE_create()
    # fast = cv2.FastFeatureDetector_create()
    orb = cv2.ORB_create()
    brisk = cv2.BRISK_create()
    # sift = cv2.xfeatures2d.SIFT_create()
    # surf = cv2.xfeatures2d.SURF_create()
    matcher = cv2.detail_AffineBestOf2NearestMatcher()
    for frameIndex in range(MaxFrameId + 1):
        print("OCMAP: index: {}".format(frameIndex))
        mappng_fname_tmp = "output_int8_{}_{}.png".format(
            frameIndex, SubmapLength)
        # mappng_fname_tmp = "output_{}_{}.png".format(frameIndex,SubmapLength)
        mappng_fname = os.path.join(dataset_path, mappng_fname_tmp)
        if not os.path.exists(mappng_fname):
            assert False, "file {} not exist".format(mappng_fname)
        mappng = cv2.imread(mappng_fname, 0)
        mappng[mappng == 255] = 50
        mappng[mappng <= 45] = 255
        mappng[mappng < 55] = 225
        mappng[mappng <= 100] = 0
        keepy, keepx = np.where(mappng == 0)
        centerx = Resolution * keepx.sum() / keepx.size
        centery = Resolution * keepy.sum() / keepy.size
        print("local x: {}  y: {}".format(centerx, centery))
        centerTf = RigidTransform(translation=[centerx, centery, 0],
                                  from_frame="origin{}".format(frameIndex),
                                  to_frame="center{}".format(frameIndex))
        center_poses.append(centerTf)
        map2centerTf = centerTf * submap_poses[frameIndex]
        center_xy[frameIndex, :] = map2centerTf.translation[
            0], map2centerTf.translation[1]
        print("global x: {}  y: {}".format(center_xy[frameIndex, 0],
                                           center_xy[frameIndex, 1]))
        mappng = cv2.GaussianBlur(mappng, (3, 3), 0)
        features = cv2.detail.computeImageFeatures2(akaze, mappng)
        feature_list.append(features)
        if frameIndex == 0:
            img2 = cv2.drawKeypoints(mappng,
                                     features.getKeypoints(),
                                     None,
                                     color=(0, 255, 0),
                                     flags=0)
            plt.imshow(img2), plt.show()

    pose_dists = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    center_dists = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    for index in range(MaxFrameId + 1):
        for jndex in range(MaxFrameId + 1):
            print("GT: index: {} and jndex: {}".format(index, jndex))
            pose_dists[index, jndex] = np.linalg.norm(
                (frame_poses[index].translation -
                 frame_poses[jndex].translation),
                ord=2)
            center_dists[index, jndex] = np.linalg.norm(
                ((center_poses[index] * submap_poses[index]).translation -
                 (center_poses[jndex] * submap_poses[jndex]).translation),
                ord=2)

    PR_matched = pose_dists < 6
    PR_matched_show = (PR_matched * 255).astype(np.uint8)
    cv2.imwrite("result/matched_{}.png".format(exp_name), PR_matched_show)
    np.save('result/pose_dists_{}.npy'.format(exp_name), pose_dists)
    np.save('result/center_dists_{}.npy'.format(exp_name), center_dists)
    np.save('result/center_xy_{}.npy'.format(exp_name), center_xy)

    transl_error = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    rot_error = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    size_error = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    match_confidence = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    for index in range(MaxFrameId + 1):
        for jndex in range(MaxFrameId + 1):
            matches_info = matcher.apply(feature_list[index],
                                         feature_list[jndex])
            match_confidence[index, jndex] = matches_info.confidence
            if type(matches_info.H) == type(None):
                continue
            rotation = matches_info.H[0:2, 0:2]
            size = math.sqrt(
                math.pow(rotation[0, 0], 2) + math.pow(rotation[0, 1], 2))
            size_error[index, jndex] = size
            rotation = rotation / size
            rotation = np.pad(rotation, ((0, 1), (0, 1)), 'constant')
            rotation[2, 2] = 1.0
            translation = matches_info.H[0:3, 2]
            translation[2] = 0.0
            T = RigidTransform(rotation, translation, "origin{}".format(jndex),
                               "origin{}".format(index))
            error = submap_poses[index].inverse() * T * submap_poses[jndex]
            # print("fromframe: {} and toframe: {}".format(error.from_frame, error.to_frame))
            transl_error[index, jndex] = np.linalg.norm(error.translation,
                                                        ord=2) * Resolution
            rot_error[index, jndex] = math.atan(error.quaternion[3] /
                                                error.quaternion[0])
            print("Match: index: {} and jndex: {}, transl:{}, rot:{}".format(
                index, jndex, transl_error[index, jndex], rot_error[index,
                                                                    jndex]))

    np.save('result/trans_error_{}.npy'.format(exp_name), transl_error)
    np.save('result/rot_error_{}.npy'.format(exp_name), rot_error)
    np.save('result/size_error_{}.npy'.format(exp_name), size_error)
    np.save('result/match_confidence_{}.npy'.format(exp_name),
            match_confidence)

    tmp = 1
Exemple #9
0
def compare_occmap(features1, features2):
    matcher = cv2.detail_AffineBestOf2NearestMatcher()

    matches_info = matcher.apply(features1, features2)

    return matches_info.confidence
def main(argv):
    exp_name = str(time.time())
    opts, args = getopt.getopt(argv, "n:")
    for opt, arg in opts:
        if opt in ("-n"):
            exp_name = arg
    dataset_path = 'picdata'
    MaxFrameId = 418

    print("OK")

    frame_poses = np.zeros([0, 7])
    submap_poses = np.zeros([0, 7])
    for frameIndex in range(MaxFrameId + 1):
        mapinfo_fname_tmp = "mapinfo_{}_{}.txt".format(frameIndex, 180)
        mapinfo_fname = os.path.join(dataset_path, mapinfo_fname_tmp)
        if not os.path.exists(mapinfo_fname):
            assert False, "file {} not exist".format(mapinfo_fname)
        framePose, submapPose = readMapinfo(mapinfo_fname)
        frame_poses = np.vstack([frame_poses, framePose])
        submap_poses = np.vstack([submap_poses, submapPose])

    pose_dists = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    for index in range(MaxFrameId + 1):
        for jndex in range(MaxFrameId + 1):
            print("GT: index: {} and jndex: {}".format(index, jndex))
            pose_dists[index, jndex] = np.linalg.norm(
                (frame_poses[index, 0:3] - frame_poses[jndex, 0:3]), ord=2)

    PR_matched = pose_dists < 6
    PR_matched_show = (PR_matched * 255).astype(np.uint8)
    cv2.imwrite("matched.png", PR_matched_show)

    feature_list = []
    kaze = cv2.KAZE_create()
    akaze = cv2.AKAZE_create()
    fast = cv2.FastFeatureDetector_create()
    orb = cv2.ORB_create()
    brisk = cv2.BRISK_create()
    sift = cv2.xfeatures2d.SIFT_create()
    surf = cv2.xfeatures2d.SURF_create()
    matcher = cv2.detail_AffineBestOf2NearestMatcher()
    for frameIndex in range(MaxFrameId + 1):
        print("OCMAP: index: {}".format(frameIndex))
        mappng_fname_tmp = "output_{}_{}.png".format(frameIndex, 180)
        mappng_fname = os.path.join(dataset_path, mappng_fname_tmp)
        if not os.path.exists(mappng_fname):
            assert False, "file {} not exist".format(mappng_fname)
        mappng = cv2.imread(mappng_fname, 0)
        mappng[mappng == 255] = 50
        mappng[mappng <= 45] = 255
        mappng[mappng < 55] = 225
        mappng[mappng <= 100] = 0
        mappng = cv2.GaussianBlur(mappng, (3, 3), 0)
        features = cv2.detail.computeImageFeatures2(akaze, mappng)
        feature_list.append(features)
        if frameIndex == 0:
            img2 = cv2.drawKeypoints(mappng,
                                     features.getKeypoints(),
                                     None,
                                     color=(0, 255, 0),
                                     flags=0)
            plt.imshow(img2), plt.show()

    trans_dists = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
    for index in range(MaxFrameId + 1):
        for jndex in range(MaxFrameId + 1):
            matches_info = matcher.apply(feature_list[index],
                                         feature_list[jndex])
            trans_dists[index, jndex] = matches_info.confidence
            print("Match: index: {} and jndex: {}, confidence:{}".format(
                index, jndex, matches_info.confidence))

    np.save('trans_dists_{}.npy'.format(exp_name), trans_dists)
    np.save('pose_dists_{}.npy'.format(exp_name), pose_dists)

    tmp = 1
Exemple #11
0
def main(argv):
    exp_name = str(time.time())
    opts, args = getopt.getopt(argv, "n:")
    for opt, arg in opts:
        if opt in ("-n"):
            exp_name = arg
    dataset_path = 'PR_result'
    dataset_dirs = os.listdir(dataset_path)
    print(dataset_dirs)
    Resolution = 0.05

    for data_dir in dataset_dirs:
        file_names = os.listdir(os.path.join(dataset_path, data_dir))
        print(data_dir + str(file_names))

        MaxFrameId = 0
        for file_name in file_names:
            if file_name[-3:] == 'txt':
                frame_id = int(file_name.split('_')[1])
                if frame_id > MaxFrameId:
                    MaxFrameId = frame_id

        frame_poses = [RigidTransform()] * (MaxFrameId + 1)
        submap_poses = [RigidTransform()] * (MaxFrameId + 1)
        center_poses = [RigidTransform()] * (MaxFrameId + 1)
        feature_list = [None] * (MaxFrameId + 1)
        center_xy = np.zeros((MaxFrameId + 1, 2))
        for file_name in file_names:
            if file_name[-3:] == 'txt':
                frame_id = int(file_name.split('_')[1])

                mapinfo_fname = os.path.join(dataset_path, data_dir, file_name)
                if not os.path.exists(mapinfo_fname):
                    assert False, "file {} not exist".format(mapinfo_fname)
                framePose, submapPose = readMapinfo(mapinfo_fname)
                frameTf = msg2RigidTransform(framePose, "map",
                                             "base{}".format(frame_id))
                submapTf = msg2RigidTransform(submapPose, "map",
                                              "origin{}".format(frame_id))
                frame_poses[frame_id] = frameTf
                submap_poses[frame_id] = submapTf

        kaze = cv2.KAZE_create()
        akaze = cv2.AKAZE_create()
        orb = cv2.ORB_create()
        brisk = cv2.BRISK_create()
        matcher = cv2.detail_AffineBestOf2NearestMatcher()
        for file_name in file_names:
            if file_name[-3:] == 'png':
                frame_id = int(file_name.split('_')[2])

                mappng_fname = os.path.join(dataset_path, data_dir, file_name)
                if not os.path.exists(mappng_fname):
                    assert False, "file {} not exist".format(mappng_fname)
                mappng = cv2.imread(mappng_fname, 0)
                mappng[mappng == 255] = 50
                mappng[mappng <= 45] = 255
                mappng[mappng < 55] = 225
                mappng[mappng <= 100] = 0
                keepy, keepx = np.where(mappng == 0)
                if keepx.size == 0 or keepy.size == 0:
                    # plt.imshow(mappng), plt.show()
                    center_poses[frame_id] = RigidTransform(
                        frame_poses[frame_id].rotation,
                        frame_poses[frame_id].translation,
                        "origin{}".format(frame_id),
                        to_frame="center{}".format(frame_id))
                    center_xy[
                        frame_id, :] = center_poses[frame_id].translation[
                            0], center_poses[frame_id].translation[1]
                    print("{} global x: {}  y: {}".format(
                        file_name, center_xy[frame_id, 0], center_xy[frame_id,
                                                                     1]))
                    # pdb.set_trace()
                else:
                    centerx = Resolution * keepx.sum() / keepx.size
                    centery = Resolution * keepy.sum() / keepy.size
                    print("{} local x: {}  y: {}".format(
                        file_name, centerx, centery))
                    centerTf = RigidTransform(
                        translation=[centerx, centery, 0],
                        from_frame="origin{}".format(frame_id),
                        to_frame="center{}".format(frame_id))
                    center_poses[frame_id] = centerTf
                    map2centerTf = centerTf * submap_poses[frame_id]
                    center_xy[frame_id, :] = map2centerTf.translation[
                        0], map2centerTf.translation[1]
                    print("{} global x: {}  y: {}".format(
                        file_name, center_xy[frame_id, 0], center_xy[frame_id,
                                                                     1]))

                mappng = cv2.GaussianBlur(mappng, (3, 3), 0)
                features = cv2.detail.computeImageFeatures2(akaze, mappng)
                feature_list[frame_id] = features

        pose_dists = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
        center_dists = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
        for index in range(MaxFrameId + 1):
            print("{} GT: index: {}".format(data_dir, index))
            for jndex in range(MaxFrameId + 1):
                pose_dists[index, jndex] = np.linalg.norm(
                    (frame_poses[index].translation -
                     frame_poses[jndex].translation),
                    ord=2)
                center_dists[index, jndex] = np.linalg.norm(
                    ((center_poses[index] * submap_poses[index]).translation -
                     (center_poses[jndex] * submap_poses[jndex]).translation),
                    ord=2)

        PR_matched = pose_dists < 6
        PR_matched_show = (PR_matched * 255).astype(np.uint8)
        cv2.imwrite("result/matched_{}.png".format(data_dir), PR_matched_show)
        np.save('result/pose_dists_{}.npy'.format(data_dir), pose_dists)
        np.save('result/center_dists_{}.npy'.format(data_dir), center_dists)
        np.save('result/center_xy_{}.npy'.format(data_dir), center_xy)

        transl_error = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
        rot_error = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
        size_error = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
        match_confidence = np.zeros((MaxFrameId + 1, MaxFrameId + 1))
        for index in range(MaxFrameId + 1):
            for jndex in range(MaxFrameId + 1):
                if type(feature_list[index]) == type(None) or type(
                        feature_list[jndex]) == type(None):
                    continue
                if len(feature_list[index].getKeypoints()) < 2 or len(
                        feature_list[jndex].getKeypoints()) < 2:
                    continue
                # print(len(feature_list[index].getKeypoints()))
                # print(len(feature_list[jndex].getKeypoints()))
                matches_info = matcher.apply(feature_list[index],
                                             feature_list[jndex])
                match_confidence[index, jndex] = matches_info.confidence
                if type(matches_info.H) == type(None):
                    continue
                rotation = matches_info.H[0:2, 0:2]
                size = math.sqrt(
                    math.pow(rotation[0, 0], 2) + math.pow(rotation[0, 1], 2))
                size_error[index, jndex] = size
                rotation = rotation / size
                rotation = np.pad(rotation, ((0, 1), (0, 1)), 'constant')
                rotation[2, 2] = 1.0
                translation = matches_info.H[0:3, 2]
                translation[2] = 0.0
                T = RigidTransform(rotation, translation,
                                   "origin{}".format(jndex),
                                   "origin{}".format(index))
                error = submap_poses[index].inverse() * T * submap_poses[jndex]
                # print("fromframe: {} and toframe: {}".format(error.from_frame, error.to_frame))
                transl_error[index, jndex] = np.linalg.norm(error.translation,
                                                            ord=2) * Resolution
                rot_error[index, jndex] = math.atan(error.quaternion[3] /
                                                    error.quaternion[0])
                print("{} Match: index: {} and jndex: {}, transl:{}, rot:{}".
                      format(data_dir, index, jndex,
                             transl_error[index, jndex], rot_error[index,
                                                                   jndex]))

        np.save('result/trans_error_{}.npy'.format(data_dir), transl_error)
        np.save('result/rot_error_{}.npy'.format(data_dir), rot_error)
        np.save('result/size_error_{}.npy'.format(data_dir), size_error)
        np.save('result/match_confidence_{}.npy'.format(data_dir),
                match_confidence)
         seam_scale = min(
             1.0,
             np.sqrt(seam_megapix * 1e6 /
                     (full_img.shape[0] * full_img.shape[1])))
         seam_work_aspect = seam_scale / work_scale
         is_seam_scale_set = True
     imgFea = cv.detail.computeImageFeatures2(finder, img)
     features.append(imgFea)
     img = cv.resize(src=full_img,
                     dsize=None,
                     fx=seam_scale,
                     fy=seam_scale,
                     interpolation=cv.INTER_LINEAR_EXACT)
     images.append(img)
 if matcher_type == "affine":
     matcher = cv.detail_AffineBestOf2NearestMatcher(
         False, try_cuda, match_conf)
 elif range_width == -1:
     matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
 else:
     matcher = cv.detail.BestOf2NearestRangeMatcher_create(
         range_width, try_cuda, match_conf)
 p = matcher.apply2(features)
 matcher.collectGarbage()
 if save_graph:
     f = open(save_graph_to, "w")
     f.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))
     f.close()
 indices = cv.detail.leaveBiggestComponent(features, p, 0.3)
 img_subset = []
 img_names_subset = []
 full_img_sizes_subset = []
Exemple #13
0
def main():

    match_conf = 0.3
    normal_files_directory = r'C:\Scratch\IPA_Data\Sampled\00_Normal_NIR'
    ambient_files_directory = r'C:\Scratch\IPA_Data\Sampled\15_Ambient_Combined\06_red_green_blue'

    normal_image_names = [r'a0_nor0.tif',
                           r'a1_nor0.tif']
                           # r'a2_nor0.tif',
                           # r'a3_nor0.tif',
                           # r'a4_nor0.tif',
                           # r'a5_nor0.tif',
                           # r'a6_nor0.tif',
                           # r'a7_nor0.tif',
                           # r'a8_nor0.tif',
                           # r'a9_nor0.tif']
                           # r'b1_nor0.tif',
                           # r'b1_nor0.tif',
                           # r'b2_nor0.tif',
                           # r'b3_nor0.tif',
                           # r'b4_nor0.tif',
                           # r'b5_nor0.tif',
                           # r'b6_nor0.tif',
                           # r'b7_nor0.tif',
                           # r'b8_nor0.tif',
                           # r'b9_nor0.tif',
                           # r'c0_nor0.tif',
                           # r'c1_nor0.tif',
                           # r'c2_nor0.tif',
                           # r'c3_nor0.tif',
                           # r'c4_nor0.tif',
                           # r'c5_nor0.tif',
                           # r'c6_nor0.tif',
                           # r'c7_nor0.tif',
                           # r'c8_nor0.tif',
                           # r'c9_nor0.tif',
                           # r'd0_nor0.tif',
                           # r'd1_nor0.tif',
                           # r'd2_nor0.tif',
                           # r'd3_nor0.tif',
                           # r'd4_nor0.tif',
                           # r'd5_nor0.tif',
                           # r'd6_nor0.tif',
                           # r'd7_nor0.tif',
                           # r'd8_nor0.tif',
                           # r'd9_nor0.tif',
                           # r'e0_nor0.tif',
                           # r'e1_nor0.tif',
                           # r'e2_nor0.tif',
                           # r'e3_nor0.tif',
                           # r'e4_nor0.tif',
                           # r'e5_nor0.tif',
                           # r'e6_nor0.tif',
                           # r'e7_nor0.tif',
                           # r'e8_nor0.tif',
                           # r'e9_nor0.tif',
                           # r'f0_nor0.tif',
                           # r'f1_nor0.tif',
                           # r'f2_nor0.tif',
                           # r'f3_nor0.tif',
                           # r'f4_nor0.tif',
                           # r'f5_nor0.tif',
                           # r'f6_nor0.tif',
                           # r'f7_nor0.tif',
                           # r'f8_nor0.tif',
                           # r'f9_nor0.tif']

    ambient_image_names = [r'a0_amb.tif',
                          r'a1_amb.tif']
                        # r'a2_amb.tif',
                        # r'a3_amb.tif',
                        # r'a4_amb.tif',
                        # r'a5_amb.tif',
                        # r'a6_amb.tif',
                        # r'a7_amb.tif',
                        # r'a8_amb.tif',
                        # r'a9_amb.tif']
                        # r'b1_amb.tif',
                        # r'b1_amb.tif',
                        # r'b2_amb.tif',
                        # r'b3_amb.tif',
                        # r'b4_amb.tif',
                        # r'b5_amb.tif',
                        # r'b6_amb.tif',
                        # r'b7_amb.tif',
                        # r'b8_amb.tif',
                        # r'b9_amb.tif',
                        # r'c0_amb.tif',
                        # r'c1_amb.tif',
                        # r'c2_amb.tif',
                        # r'c3_amb.tif',
                        # r'c4_amb.tif',
                        # r'c5_amb.tif',
                        # r'c6_amb.tif',
                        # r'c7_amb.tif',
                        # r'c8_amb.tif',
                        # r'c9_amb.tif',
                        # r'd0_amb.tif',
                        # r'd1_amb.tif',
                        # r'd2_amb.tif',
                        # r'd3_amb.tif',
                        # r'd4_amb.tif',
                        # r'd5_amb.tif',
                        # r'd6_amb.tif',
                        # r'd7_amb.tif',
                        # r'd8_amb.tif',
                        # r'd9_amb.tif',
                        # r'e0_amb.tif',
                        # r'e1_amb.tif',
                        # r'e2_amb.tif',
                        # r'e3_amb.tif',
                        # r'e4_amb.tif',
                        # r'e5_amb.tif',
                        # r'e6_amb.tif',
                        # r'e7_amb.tif',
                        # r'e8_amb.tif',
                        # r'e9_amb.tif',
                        # r'f0_amb.tif',
                        # r'f1_amb.tif',
                        # r'f2_amb.tif',
                        # r'f3_amb.tif',
                        # r'f4_amb.tif',
                        # r'f5_amb.tif',
                        # r'f6_amb.tif',
                        # r'f7_amb.tif',
                        # r'f8_amb.tif',
                        # r'f9_amb.tif']

    normal_image_paths = []
    ambient_image_paths = []

    for filename in normal_image_names:
        normal_image_paths.append(os.path.join(normal_files_directory, filename))

    for filename in ambient_image_names:
        ambient_image_paths.append(os.path.join(ambient_files_directory, filename))

    norm_imgs = []
    amb_imgs = []

    full_image = cv.imread(cv.samples.findFile(normal_image_paths[0]), 0)
    full_img_size = full_image.shape

    for img_name in normal_image_paths:
        img = cv.imread(cv.samples.findFile(img_name), 0)

        if img is None:
            print("can't read image " + img_name)
            sys.exit(-1)
        norm_imgs.append(img)

    for img_name in ambient_image_paths:
        img = cv.imread(cv.samples.findFile(img_name))
        if img is None:
            print("can't read image " + img_name)
            sys.exit(-1)
        amb_imgs.append(img)

    finder = cv.xfeatures2d.SURF_create(300)

    norm_kp1, norm_des1 = finder.detectAndCompute(norm_imgs[0], None)
    norm_kp2, norm_des2 = finder.detectAndCompute(norm_imgs[1], None)
    amb_kp1, amb_des1 = finder.detectAndCompute(amb_imgs[0], None)
    amb_kp2, amb_des2 = finder.detectAndCompute(amb_imgs[1], None)

    # test_feat_img = cv.drawKeypoints(amb_imgs[0], norm_kp1, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[0]), int(full_img_size[1]))
    # cv.waitKey()
    #
    # test_feat_img = cv.drawKeypoints(norm_imgs[0], amb_kp1, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[0]), int(full_img_size[1]))
    # cv.waitKey()
    #
    # test_feat_img = cv.drawKeypoints(amb_imgs[1], norm_kp2, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[1]), int(full_img_size[1]))
    # cv.waitKey()
    #
    # test_feat_img = cv.drawKeypoints(norm_imgs[1], amb_kp2, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[1]), int(full_img_size[1]))
    # cv.waitKey()
    #
    #
    #

    comb_kp1 = np.concatenate([norm_kp1, amb_kp1])
    comb_kp2 = np.concatenate([norm_kp2, amb_kp2])

    comb_des1 = np.concatenate([norm_des1, amb_des1])
    comb_des2 = np.concatenate([norm_des2, amb_des2])

    #
    # test_feat_img = cv.drawKeypoints(amb_imgs[0], comb_kp1, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[0]), int(full_img_size[1]))
    # cv.waitKey()
    #
    # test_feat_img = cv.drawKeypoints(norm_imgs[0], comb_kp1, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[0]), int(full_img_size[1]))
    # cv.waitKey()
    #
    # test_feat_img = cv.drawKeypoints(amb_imgs[1], comb_kp2, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[1]), int(full_img_size[1]))
    # cv.waitKey()
    #
    # test_feat_img = cv.drawKeypoints(norm_imgs[1], comb_kp2, None, (255, 0, 0), 4)
    # cv.namedWindow('image', cv.WINDOW_NORMAL)
    # cv.imshow('image', test_feat_img)
    # cv.resizeWindow('image', int(full_img_size[1]), int(full_img_size[1]))
    # cv.waitKey()

    matcher = cv.detail_AffineBestOf2NearestMatcher(False, False, match_conf)
    temp_1 = cv.detail.computeImageFeatures(finder, norm_imgs[0])
    temp_2 = cv.detail.computeImageFeatures(finder, amb_imgs[0])

    temp = temp_1.append(temp_2)
def init_panorama(liste_images, pano):
    nb_images = len(liste_images)
    if nb_images < 2:
        print("Il faut au moins 2 images")
        return False, pano
    algo_descripteur = cv.ORB.create(pano.nb_point_cle)
    descripteurs = cv.detail.computeImageFeatures(algo_descripteur,
                                                  liste_images)
    if pano.matcher_type == "affine":
        algo_apparier = cv.detail_AffineBestOf2NearestMatcher(
            True, pano.try_cuda, pano.seuil_appariement)
    else:
        algo_apparier = cv.detail_AffineBestOf2NearestMatcher(
            False, pano.try_cuda, pano.seuil_appariement)
    appariement_image = algo_apparier.apply2(descripteurs)
    pano.indices = cv.detail.leaveBiggestComponent(descripteurs,
                                                   appariement_image,
                                                   pano.seuil_confiance)
    nb_images = len(pano.indices)
    if nb_images < 2:
        print("Echec de l'appariement")
        return False, pano
    pano.remise_a_zero()
    if pano.type_estimateur == "affine":
        estimateur = cv.detail_AffineBasedEstimator()
    else:
        estimateur = cv.detail_HomographyBasedEstimator()
    ret, pano.cameras = estimateur.apply(descripteurs, appariement_image, None)
    if not ret:
        print("Echec de l'estimation des modeles.")
        return False, pano
    for cam in pano.cameras:
        cam.R = cam.R.astype(np.float32)
    if pano.fct_cout not in pano.cout:
        print("Fonction de cout inconnue: ", pano.fct_cout)
        return False, pano
    ajuster = pano.cout[pano.fct_cout]()
    ajuster.setConfThresh(pano.seuil_confiance)
    refine_mask = np.ones((3, 3), np.uint8)
    ajuster.setRefinementMask(refine_mask)

    ret, pano.cameras = ajuster.apply(descripteurs, appariement_image,
                                      pano.cameras)
    if not ret:
        print("Echec de l'ajustement des parametres.")
        return False, pano
    for cam in pano.cameras:
        pano.focales.append(cam.focal)
    sorted(pano.focales)

    if len(pano.focales) % 2 == 1:
        pano.focale_moyenne = pano.focales[len(pano.focales) // 2]
    else:
        pano.focale_moyenne = (pano.focales[len(pano.focales) // 2] +
                               pano.focales[len(pano.focales) // 2 - 1]) / 2
    images_projetees = []
    images_projetees_float = []

    pano.composition = cv.PyRotationWarper(pano.surface_compo,
                                           pano.focale_moyenne)
    for i in range(nb_images):
        idx = pano.indices[i][0]
        cam_int = pano.cameras[idx].K().astype(np.float32)
        coins, image_wp = pano.composition.warp(liste_images[idx], cam_int,
                                                pano.cameras[idx].R,
                                                cv.INTER_LINEAR,
                                                cv.BORDER_REFLECT)
        pano.liste_pos_coin.append(coins)
        pano.liste_taille_masque.append((image_wp.shape[1], image_wp.shape[0]))
        images_projetees.append(image_wp)
        umat = cv.UMat(255 * np.ones(
            (liste_images[pano.indices[i][0]].shape[0],
             liste_images[pano.indices[i][0]].shape[1]), np.uint8))

        _, mask_wp = pano.composition.warp(umat, cam_int, pano.cameras[idx].R,
                                           cv.INTER_NEAREST,
                                           cv.BORDER_CONSTANT)
        pano.liste_masque_compo.append(mask_wp)

    for img in images_projetees:
        imgf = img.astype(np.float32)
        images_projetees_float.append(imgf)
    pano.algo_correct_expo = cv.detail.ExposureCompensator_createDefault(
        pano.correction_exposition)
    pano.algo_correct_expo.feed(pano.liste_pos_coin, images_projetees,
                                pano.liste_masque_compo)

    if pano.fct_couture not in pano.liste_couture:
        print("type de couture inconnue :", pano.fct_couture)
        return False, pano
    pano.couture[pano.fct_couture].find(images_projetees_float,
                                        pano.liste_pos_coin,
                                        pano.liste_masque_compo)
    if len(pano.indices) == len(liste_images):
        sauver_configuration(pano)
    return True, pano
        is_work_scale_set = True
    else:
        if is_work_scale_set is False:
            work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
            is_work_scale_set = True
        img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT)
    if is_seam_scale_set is False:
        seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
        seam_work_aspect = seam_scale / work_scale
        is_seam_scale_set = True
    imgFea= cv.detail.computeImageFeatures2(finder,img)
    features.append(imgFea)
    img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT)
    images.append(img)
if matcher_type== "affine":
    matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
elif range_width==-1:
    matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
else:
    matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf)
p=matcher.apply2(features)
matcher.collectGarbage()
if save_graph:
    f = open(save_graph_to,"w")
    f.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))
    f.close()
indices=cv.detail.leaveBiggestComponent(features,p,0.3)
img_subset =[]
img_names_subset=[]
full_img_sizes_subset=[]
num_images=len(indices)