def findM(self, img_names, side):
        '''Determine the Camera Matrix and update the 
        StereoCam's values for the camera matrix, M
        @img_names = individual camera calibration images
        @side = specify which camera (1 = left, 2 = right)
        '''
        # Specify the calibration checkerboard square and pattern size
        pattern_size = (9, 6)
        square_size = 1.0
        pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
        pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
        pattern_points *= square_size

        # locate the object and image points of the checker board in the 
        # calibration images
        obj_points = []
        img_points = []
        h, w = 0, 0
        for fn in img_names:
            img1 = cv2.imread(fn)
            img = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

            if img is None:
                print "Failed to load", fn
                continue

            h, w = img.shape[:2]
            found, corners = cv2.findChessboardCorners(img, pattern_size)
            if found:
                term = (
                    cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
                cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)

            if not found:
                print 'chessboard not found'
                continue
            img_points.append(corners.reshape(-1, 2))
            obj_points.append(pattern_points)

        # Calibrate the camera 
        rms, camera_matrix, dist_coefs, rvecs, tvecs = \
            cv2.calibrateCamera(obj_points, img_points, (w, h), None, None)

        # undistort images
        K = camera_matrix
        d = np.array([dist_coefs[0][0], dist_coefs[0][1], 0, 0, 0])

        img = cv2.imread('09152015/left/l1.JPG')
        h, w = img.shape[:2]

        # Update the StereoCam camera matrix with the optimal camera matrix 
        if side == 1:
            self.M1, _ = cv2.getOptimalNewCameraMatrix(K, d, (w, h), 0)

        if side == 2:
            self.M2, _ = cv2.getOptimalNewCameraMatrix(K, d, (w, h), 0)
Exemple #2
0
    def get_view_matrix(self, alpha):
        """
        Returns camera matrix for handling image and coordinates distortion and undistortion. Based on alpha,
        up to all pixels of the distorted image can be visible in the undistorted image.

        :param alpha: Free scaling parameter between 0 (when all the pixels in the undistorted image are valid) and 1
                      (when all the source image pixels are retained in the undistorted image). For convenience for -1
                      returns custom camera matrix self.Kundistortion and None returns self.K.
        :type alpha: float or None
        :return: camera matrix for a view defined by alpha
        :rtype: array, shape=(3, 3)
        """
        if alpha == -1:
            Kundistortion = self.Kundistortion
        elif alpha is None:
            Kundistortion = self.K
        elif self.calibration_type == 'opencv':
            Kundistortion, _ = cv2.getOptimalNewCameraMatrix(self.K, self.opencv_dist_coeff, tuple(self.size_px), alpha)
        elif self.calibration_type == 'opencv_fisheye':
            Kundistortion = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(self.K, self.opencv_dist_coeff,
                                                                                   tuple(self.size_px), self.R,
                                                                                   balance=alpha)
        else:
            # TODO
            assert False, 'not implemented'
        return Kundistortion
    def recent_events(self, events):
        frame = events.get('frame')
        if not frame:
            return
        if self.collect_new:
            img = frame.img
            status, grid_points = cv2.findCirclesGrid(img, (4,11), flags=cv2.CALIB_CB_ASYMMETRIC_GRID)
            if status:
                self.img_points.append(grid_points)
                self.obj_points.append(self.obj_grid)
                self.collect_new = False
                self.count -=1
                self.button.status_text = "{:d} to go".format(self.count)


        if self.count<=0 and not self.calculated:
            self.calculate()
            self.button.status_text = ''

        if self.window_should_close:
            self.close_window()

        if self.show_undistortion:

            adjusted_k,roi = cv2.getOptimalNewCameraMatrix(cameraMatrix= self.camera_intrinsics[0], distCoeffs=self.camera_intrinsics[1], imageSize=self.camera_intrinsics[2], alpha=0.5,newImgSize=self.camera_intrinsics[2],centerPrincipalPoint=1)
            self.undist_img = cv2.undistort(frame.img, self.camera_intrinsics[0], self.camera_intrinsics[1],newCameraMatrix=adjusted_k)
def correctDistortion(image):
   
   size = image.shape[1],image.shape[0]
   
   corners = findCorners(image)

   patternPoints = np.zeros( (np.prod(boardSize), 3), np.float32 )
   patternPoints[:,:2] = np.indices(boardSize).T.reshape(-1, 2)
   
   imagePoints = np.array([corners.reshape(-1, 2)])
   objectPoints = np.array([patternPoints])
   cameraMatrix = np.zeros((3, 3))
   distCoefs = np.zeros(4)
   rc,cameraMatrix,distCoeffs,rvecs,tvecs = cv2.calibrateCamera(
      objectPoints,
      imagePoints,
      boardSize,
      cameraMatrix,
      distCoefs
   )
   
   newCameraMatrix,newExtents = cv2.getOptimalNewCameraMatrix(cameraMatrix,distCoeffs,size,0.0)
   
   mapx, mapy = cv2.initUndistortRectifyMap(
      cameraMatrix,
      distCoeffs,
      None,
      cameraMatrix,
      size,
      cv2.CV_32FC1
   )
   newImage = cv2.remap( image, mapx, mapy, cv2.INTER_LANCZOS4 )
   return newImage
def undistort_image(img, cameraMatrix, distCoeffs, imageSize):
    """
    Undistort image "img",
    shot with a camera with intrinsics ("cameraMatrix", "distCoeffs", and "imageSize" (w, h)).
    Apart from the undistorted image, a region-of-interest will also be returned.
    
    See OpenCV's doc about the format of "cameraMatrix" and "distCoeffs".
    """
    
    # Refine cameraMatrix, and calculate RegionOfInterest
    cameraMatrix_new, roi = cv2.getOptimalNewCameraMatrix(
            cameraMatrix, distCoeffs, imageSize,
            1 )    # all source image pixels retained in undistorted image

    # Undistort
    mapX, mapY = cv2.initUndistortRectifyMap(
            cameraMatrix, distCoeffs,
            None,    # optional rectification transformation
            cameraMatrix_new, imageSize,
            5 )    # type of the first output map (CV_32FC1)
    img_undistorted = cv2.remap(
            img, mapX, mapY, cv2.INTER_LINEAR )

    # Crop the image
    x,y, w,h = roi
    img_undistorted = img_undistorted[y:y+h, x:x+w]
    
    return img_undistorted, roi
Exemple #6
0
	def calibrate(self,images):
		# Arrays to store object points and image points from all the images.
		objpoints = [] # 3d point in real world space
		imgpoints = [] # 2d points in image plane.
		w,h=0,0

		for fname in images:
			gray = cv2.imread(fname,0)
			ret,objpoints,imgpoints = self.findMarkers(gray,objpoints,imgpoints)
			h,w=gray.shape[:2]

		#print len(objpoints),len(imgpoints),w,h

		rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, (w,h), None, None)

		print 25*'-'
		print "RMS:", rms
		print "camera matrix:\n", mtx
		print "distortion coefficients: ", dist.ravel()
		print 25*'-'
		# not sure of the value of this
		alpha = 0.5
		newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),alpha)
		# newcameramtx = 0
		# roi = 0
		self.data = {'camera_matrix': mtx, 'dist_coeff': dist, 'newcameramtx': newcameramtx, 'rms': rms, 'rvecs': rvecs, 'tvecs': tvecs}
Exemple #7
0
def calibrate(filenames):
    # termination criteria
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
    objp = np.zeros((6*7,3), np.float32)
    objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
    # Arrays to store object points and image points from all the images.
    objpoints = [] # 3d point in real world space
    imgpoints = [] # 2d points in image plane.
    images = []
    for filename in filenames:
        # Find the chess board corners. If found, add object points, image points (after refining them)
        img = cv2.imread(filename)
        if img != None:
            print "Loaded " + repr(filename)
        else:
            print "Unable to load image " + repr(filename)
            continue
        images.append(img)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, (7,6), None)
        if ret == True:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria)
            imgpoints.append(corners2)
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
    print "Loaded all images and calbulated calibration"
    for i, img in enumerate(images):
        img = images[i]
        h, w = img.shape[:2]
        newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
        dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
        x, y, w, h = roi
        cv2.imwrite( 'calibrated/out_' + str(i) + '.png', dst[ y : y+h, x : x+w ])
        print "Outputted calibrated image: 'calibrated/out_" + str(i) + ".png'"
Exemple #8
0
    def warpImage(self):
        # Undistort the frame

        #img = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
        img = self.image
        h,  w = img.shape[:2]
        newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.cameraMatrix, self.distCoefs, (w, h), 1, (w, h))
        dst = cv2.undistort(img, self.cameraMatrix, self.distCoefs, None, newcameramtx)
        self.image = dst
        print "roi:", roi

        # crop the image

        x, y, w, h = roi
        if w > 0 and h > 0:
            dst = dst[y:y+h, x:x+w]
            self.image  = dst
            self.height = h
            self.width  = w

        #self.image  = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
#        if self.image is not None:
#            self.height, self.width, self.depth = self.image.shape

        # Warp the image to be the optimal size
#        warpedimage = zeros((self.warpheight, self.warpwidth, 3), uint8)
#        dsize = (self.warpwidth, self.warpheight)
#        cv2.warpPerspective(self.image, self.M, dsize, dst=warpedimage, borderMode=cv2.BORDER_TRANSPARENT)
#        self.image = warpedimage
#        self.height,self.width,self.depth = self.image.shape
#        self.warped = True
        return
 def __init__(self, fname, log, F, dist, pitch):
     """
     Creates a new MonoRectify object to read video from video file fname
     using attitude data from LogReader log, using camera matrix F and
     distortion coefficients dist. The camera is assumed to be pitched down
     by pitch degrees.
     """
     self.log = log
     self.F = F
     self.dist = dist
     self.fname = fname
     self.pitch = pitch
     
     # Open video for reading
     self.cap = cv2.VideoCapture(fname)
     assert(self.cap.isOpened())
     self.fps = self.cap.get(cv2.cv.CV_CAP_PROP_FPS)
     self.w = int(self.cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH))
     self.h = int(self.cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT))
     
     # Get new camera matrix for post-distortion removal transformations
     self.newF, self.roi=cv2.getOptimalNewCameraMatrix(self.F, self.dist,
                                                      (self.w,self.h),0)
     print self.F
     print self.newF
     #self.newF[0,0] = self.newF[0,0]*.9
     #self.newF[1,1] = self.newF[1,1]*.9
     print self.newF
def main(argv):
	camera = np.load(argv[0])
	images_path = argv[1]
	output_dir = argv[2]

	if not os.path.exists(output_dir):
		os.makedirs(output_dir)

	images = glob.glob(images_path + '/*.jpg')
	for fname in images:
		img = cv2.imread(fname)
		h, w = img.shape[:2]

		newcameramtx, roi = cv2.getOptimalNewCameraMatrix(
			camera['mtx'],
			camera['dist'],
			(w,h),
			0, # 0.6
			(w,h)
		)

		mapx,mapy = cv2.initUndistortRectifyMap(
			camera['mtx'],
			camera['dist'],
			None,
			newcameramtx,
			(w,h),
			5
		)

		dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
		cv2.imwrite(output_dir + '/' + os.path.basename(fname), dst)
    def __init__(self, args):

        self.outputChannel = args.output_channel
        self.videoCapture = self.setup(args)
        self.frame = None
        self.lcmobj = lcm.LCM()
        self.saveImages = args.save_images

        # Get all calibration files and use the latest to get the data
        # returned by internal calibration
        # NOTE: See drivers/general_camera_tests/test_calibration.py for
        #       explanations about these variables
        calibrationResults = pickle.load(
            open(navigation.getLatestIntrinsicCalibration(), "rb"))
        self.retval = calibrationResults["retval"]
        self.matrix = calibrationResults["matrix"]
        self.distCoeffs = calibrationResults["distCoeffs"]
        self.rvecs = calibrationResults["rvecs"]
        self.tvecs = calibrationResults["tvecs"]
        self.newCameraMatrix, self.roi = cv2.getOptimalNewCameraMatrix(
            cameraMatrix=self.matrix,
            distCoeffs=self.distCoeffs,
            imageSize=(int(self.width), int(self.height)),
            alpha=1,
            newImgSize=(int(self.width), int(self.height))
        )
        # Overwrite the camera's width and height with the ROI width/height,
        # b/c that will be the final output
        self.width = self.roi[2]
        self.height = self.roi[3]

        self.requestSub = self.lcmobj.subscribe(args.request_channel,
                                                self.handleRequest)
def undistort(mtx, dist, objpoints, imgpoints, rvecs, tvecs, img):
    #read in an image of choice
    #usefule for the reading in and segmenting of board to make hough lines easier
    h, w = img.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))

        # undistort
    dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

    # crop the image
    x, y, w, h = roi
    dst = dst[y:y + h, x:x + w]
    cv2.imwrite('calibresult.png', dst)

    # undistort
    mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), 5)
    dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)

    # crop the image
    x, y, w, h = roi
    dst = dst[y:y + h, x:x + w]
    cv2.imwrite('calibresult.png', dst)

    mean_error = 0
    for i in xrange(len(objpoints)):
        imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
        error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
        mean_error += error

    print "total error: ", mean_error / len(objpoints)
def get_transform():
    # termination criteria
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    pattern_size = (9, 6)
    pattern_points = np.zeros( (np.prod(pattern_size), 3), np.float32 )
    pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
    # pattern_points *= square_size
    obj_points = []
    img_points = []
    w,h = 0,0

    for fname in os.listdir('chessboard'):
        if fname[0] == '.': continue
        img = cv2.imread('chessboard/' + fname)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        h, w = img.shape[:2]
        found, corners = cv2.findChessboardCorners(gray, pattern_size)
        print found
        if found:
            corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        
            img_points.append(corners.reshape(-1, 2))
            obj_points.append(pattern_points)
        
            vis = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
            cv2.drawChessboardCorners(vis, pattern_size, corners, found)
        
            # cv2.imshow('img', vis)
            # cv2.waitKey(500)

    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w,h), None, None)
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
    return mtx, roi, newcameramtx, dist
def _cleanImage(image):
	h,  w = image.shape[:2]
	newcameramtx, roi=cv2.getOptimalNewCameraMatrix(camera_matrix,dist_coefs,(w,h),1,(w,h))
	dst = cv2.undistort(image, camera_matrix, dist_coefs, None, newcameramtx)
	x,y,w,h = roi
	dst = dst[y:y+h, x:x+w]
	return dst
def main(file_list, outdir):
    # copy parameters to arrays
    K = np.array([[1743.23312, 0, 2071.06177], [0, 1741.57626, 1476.48298], [0, 0, 1]])
    d = np.array([-0.307412748, 0.300929683, 0, 0, 0])  # just use first two terms (no translation)

    logging.debug("Starting loop")
    for image in file_list:
        logging.debug("var %s", image)
        imgname = image.split("/")[-1]
        new_image_path = os.path.join(outdir, imgname)
        if not os.path.exists(new_image_path):
            logging.debug("Undistorting %s . . . ", imgname)
            # read one of your images
            img = cv2.imread(image)
            h, w = img.shape[:2]

            # un-distort
            newcamera, roi = cv2.getOptimalNewCameraMatrix(K, d, (w, h), 0)
            newimg = cv2.undistort(img, K, d, None, newcamera)

            # cv2.imwrite("original.jpg", img)
            cv2.imwrite(new_image_path, newimg)

            # Write metadata
            old_meta = pyexiv2.ImageMetadata(image)
            new_meta = pyexiv2.ImageMetadata(new_image_path)
            old_meta.read()
            new_meta.read()
            old_meta.copy(new_meta)
            new_meta.write()
        else:
            logging.debug("Image already processed")
Exemple #16
0
def undistort(path, imagesArr, K, d):

    print '\n-------- Undistort Images ---------'

    for fname in imagesArr:
        print 'Undistorting', os.path.basename(fname),
        
        img = cv2.imread(fname)
        if img is None:
          print ' -  Failed to load.'
          continue
        
        h, w = img.shape[:2]
        
        # Calculate new optimal matrix to avoid losing pixels in the edges after undistortion
        new_matrix, roi = cv2.getOptimalNewCameraMatrix(K, d, (w, h), 1)

        # Generate undistorted image
        #newimg = cv2.undistort(img, K, d, None, new_matrix)
        
        
        # Alternative undistortion via remapping
        mapx, mapy = cv2.initUndistortRectifyMap(K, d, None, new_matrix, (w, h), cv2.CV_32FC1)
        newimg = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)

        # Output undistorted image to the same location with postfix '_undistorted'
        f = os.path.basename(fname).split('.')
        newimg_path = os.path.join(path, ".".join(f[:-1]) + '_undistorted.' + f[-1])
        cv2.imwrite(newimg_path, newimg)
        print '----->', newimg_path

    print 'Undistorted', len(imagesArr), 'images.'
    print '-------- End of Undistortion ---------\n'
Exemple #17
0
def computeCameraMatrix():
    counter = int(x=1)

    h, w = 0, 0
    for fname in images:
        img = cv2.imread(fname)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        h, w = gray.shape[:2]

        # Find the chess board corners
        ret, corners = cv2.findChessboardCorners(gray, pattern_size, None)
        # If found, add object points, image points (after refining them)
        if ret == True:
            objpoints.append(objp)
            cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

            imgpoints.append(corners)
            # Draw and display the corners
            cv2.drawChessboardCorners(img, pattern_size, corners, ret)
            cv2.imshow("img", img)

            rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, (w, h))

            newcameramtx, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))

            dst = cv2.undistort(gray, camera_matrix, dist_coefs, None, newcameramtx)
            cv2.imshow("undistort image", dst)
            cv2.waitKey(100)
            counter = counter + 1
        else:
            print ("No corners found on Picture " + str(counter))

    cv2.destroyAllWindows()
Exemple #18
0
def dewarp(imagedir):
    # Loading from json file
    C = CameraParams.fromfile(os.path.join(imagedir, "params.json"))
    K = C.K
    D = C.D
    print("Loaded camera parameters from " + os.path.join(imagedir, "params.json"))

    for f in file_list(imagedir, ['jpg', 'jpeg', 'png']):
        print(f)
        colour = cv2.imread(f)
        grey = cv2.cvtColor(colour, cv2.COLOR_BGR2GRAY)

        h, w = grey.shape[:2]
        newcameramtx, roi=cv2.getOptimalNewCameraMatrix(K, D, (w,h), 1, (w,h))
        mapx, mapy = cv2.initUndistortRectifyMap(K, D, None, newcameramtx, (w,h), 5)
        dewarped = cv2.remap(grey, mapx, mapy, cv2.INTER_LINEAR)

        x, y, w, h = roi
        dewarped = dewarped[y:y+h, x:x+w]
        grey = cv2.resize(grey, (0,0), fx=0.5, fy=0.5) 
        dewarped = cv2.resize(dewarped, (0,0), fx=0.5, fy=0.5) 

        cv2.imshow("Original", grey )
        cv2.imshow("Dewarped", dewarped)
        cv2.waitKey(-1)
def getImage():
     # initialize the camera and grab a reference to the raw camera capture
     camera = PiCamera()
     camera.resolution = (640, 480)
     camera.framerate = 32
     rawCapture = PiRGBArray(camera, size=(640, 480))

     # print("setting is end!")

     # allow the camera to warmup
     # time.sleep(0.1)
     dst = None
     # capture frames from the camera
     for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
	# grab the raw NumPy array representing the image, then initialize the timestamp
	# and occupied/unoccupied text
	image = frame.array

	mtx =np.array([[100, 0, 320], [0, 100, 240], [0, 0, 1]], dtype=np.float32)  
	dist = np.array([-0.009, 0.0, 0.0, 0.0], dtype=np.float32)
	h,  w = image.shape[:2]
	newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
	# undistort
	dst = cv2.undistort(image, mtx, dist, None, newcameramtx)
       break

     return dst
    def update(self, queue):
        self.camera = PiCamera()
        self.image = None
        self.camera.resolution = (w, h)
        self.camera.framerate = 60
        self.camera.brightness = 70
        self.camera.contrast = 100
        self.rawCapture = PiRGBArray(self.camera, size=(w, h))

        time.sleep(0.1)

        mtx = np.matrix([[313.1251541, 0., 157.36763381],
                         [0., 311.84837219, 130.36209271],
                         [0., 0., 1.]])
        dist = np.matrix([[-0.42159111, 0.44966352, -0.00877638, 0.00070653, -0.43508731]])
        newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 0, (w, h))

        self.mapx, self.mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), 5)
        self.stream = self.camera.capture_continuous(self.rawCapture, format="bgr", use_video_port=True)
        self.stopped = False

        for f in self.stream:
            self.image = cv2.remap(f.array, self.mapx, self.mapy, cv2.INTER_LINEAR)
            self.rawCapture.truncate(0)

            if not q.full():
                queue.put(self.image, False)

            if self.stopped:
                self.stream.close()
                self.rawCapture.close()
                self.camera.close()
                return
 def optimiseMatrix(self, img):
     """        
     :param img: The source image to take as reference
     """
     h, w = img.shape[:2]
     optimalCameraMatrix, roi = cv2.getOptimalNewCameraMatrix(self.cameraMatrix, self.distortionCoeffs, (w,h), 1)
     self.optimalCameraMatrix = optimalCameraMatrix
     return optimalCameraMatrix
Exemple #22
0
 def change_resize_undist_mode(val):
     self.resize_distord = val
     if val:  #find the right value to crop
         self.affine_roi()
     else:    #find the original roi
         _, self.roi = cv2.getOptimalNewCameraMatrix(cameraMatrix= self.camera_intrinsics[0], distCoeffs=self.camera_intrinsics[1], imageSize=self.camera_intrinsics[2], alpha=0.7,newImgSize=self.camera_intrinsics[2],centerPrincipalPoint=1)
         self.roi += 0., 0.
     init_prev_img()
Exemple #23
0
    def __init__(self, calib_data) :
        self.h = calib_data.h
        self.w = calib_data.w
        self.rms = calib_data.rms
        self.camera_matrix = calib_data.camera_matrix
        self.dist_coefs = calib_data.dist_coefs

        self.newcameramtx, self.roi = cv2.getOptimalNewCameraMatrix(self.camera_matrix, self.dist_coefs, (self.w, self.h), 1, (self.w, self.h))
def refineImage1(img):
	global newcameramtx1
	global roi1
	global mtx1
	global dist1
	global imgShape1
	# h, w = img.shape[:2]    # zamenjeno jednostavnim imgShape jer je to uvek onstantno
	newcameramtx1, roi1 = cv2.getOptimalNewCameraMatrix(mtx1, dist1, imgShape1, 1, imgShape1)
def refineImage(img):
	global newcameramtx
	global roi
	global mtx
	global dist
	global imgShape
	# h, w = img.shape[:2]    # zamenjeno jednostavnim imgShape jer je to uvek konstantno, samo ga trebas azurirati nakon kalibracije posto se tu menja
	newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, imgShape, 1, imgShape)
    def undistortPoints(self, points):
        s = self.img.shape
        cam = self.coeffs['cameraMatrix']
        d = self.coeffs['distortionCoeffs']
 
        (newCameraMatrix, _) = cv2.getOptimalNewCameraMatrix(cam, 
                                    d, (s[1], s[0]), 1, 
                                    (s[1], s[0]))
        return cv2.undistortPoints(points,cam, d, P=newCameraMatrix)
def undistort(img, mtx, dist):
    h, w = img.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))

    dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

    x, y, w, h = roi
    dst = dst[y:y + h, x:x + w]
    return dst
def main():
    # ファイル名宣言
    imreadName = "mov0.jpg"              # 読み込む画像ファイル名
    imwriteName = "image_correction.jpg"    # 歪み補正済み画像ファイル名
    jsonName = "calibrateParameter.json"    # 読み込むJSONファイル名
    
    # パターン宣言
    square_size = 23.0      # パターン1マスの1辺サイズ[mm]
    pattern_size = (10, 7)  # パターンの行列数
    
    # Object Points(ワールド座標系), Image Points(画像座標系)宣言
    pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
    pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
    pattern_points *= square_size
    object_points = []      # 3D point in real world spece
    image_points = []       # 2D point in image plane
    
    # termination criteria
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    
    # 内部パラメータの読み込み
    inputfile = open(jsonName, "r")
    data = json.load(inputfile)
    inputfile.close()
    
    cameraMatrix = np.array(data["CameraMatrix"])
    distCoeffs =np.array(data["DistortCoeffs"])
     
    # 画像の取得
    image = cv2.imread(imreadName, 0)
    # チェスボードのコーナーを検出
    found, corners = cv2.findChessboardCorners(image, pattern_size)
    # コーナーを検出した場合
    if found:
        print "Success : chessboard found"
        cv2.cornerSubPix(image, corners, (11, 11), (-1, -1), criteria)
    # コーナを検出できない場合
    if not found:
        print "Fail : chessboard not found"
        return
    image_points.append(corners.reshape(-1, 2))
    object_points.append(pattern_points)
    imagePoints = np.array(image_points)
    objectPoints = np.array(object_points)
    
    # solvePnP
    retval, rvec, tvec = cv2.solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs)
    print "retval: ", retval
    print "rvec: ", rvec
    print "tvec:", tvec
    
    # 歪み補正
    newcamera, roi = cv2.getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, image.shape, 0)
    image_correction = cv2.undistort(image, cameraMatrix, distCoeffs, None, newcamera)
    
    # 補正した画像の保存
    cv2.imwrite(imwriteName, image_correction)
    def undistortImage(self, cv_image):
        h,  w = cv_image.shape[:2]
        newcameramtx, roi=cv2.getOptimalNewCameraMatrix(self.camera_matrix,self.distortion,(w,h),1,(w,h))
        dst = cv2.undistort(cv_image, self.camera_matrix, self.distortion, None, newcameramtx)

        # crop the image, I could get roi from camera intrinsics or from cv2.getOptimalNewCameraMatrix. Think its not needed though?
        x,y,w,h = roi
        dst = np.array(dst[y:y+h, x:x+w])
        return dst
def undistort(image, cameraMatrix, distCoefs):
    """Undistort image"""  
    h, w = image.shape[:2]
    newCameraMtx, roi = cv2.getOptimalNewCameraMatrix(cameraMatrix, distCoefs, (w, h), 1, (w, h))
    # Undistort
    dst = cv2.undistort(image, cameraMatrix, distCoefs, None, newCameraMtx)
    # Crop the image
    x, y, w, h = roi
    dst = dst[y:y + h, x:x + w]
    return dst
Exemple #31
0
def find_markers(frame):
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # cv2.imwrite(file_out, frame)
    corners, ids, rejectedImgPoints = cv2.aruco.detectMarkers(gray, DICTIONARY, parameters=PARAMETERS)
    rvecs, tvecs, _objPoints = cv2.aruco.estimatePoseSingleMarkers(corners, MARKER_EDGE, CAMERA_MATRIX, DIST_COEFFS)

    h,w = frame.shape[:2] # frame - original frame captured from camera
    newCameraMatrix, roi = cv2.getOptimalNewCameraMatrix(CAMERA_MATRIX, DIST_COEFFS, (w,h), 1, (w,h))


    ### testing to get the undistorted image
    ### -> fail
    # newcameramtx, roi = cv2.getOptimalNewCameraMatrix(CAMERA_MATRIX, DIST_COEFFS, (w,h), 1, (w,h))
    # dst = cv2.undistort(gray, CAMERA_MATRIX, DIST_COEFFS, None, newcameramtx)
    # x, y, w, h = roi
    # # dst = dst[y:y+h, x:x+w]
    # cv2.imwrite(file_out, dst)

    result = set()
    if ids is None:
        return result

    for i in range(0, len(ids)):
        try:
            id = str(ids[i][0])
            if id > 20:
                return

            marker = corners[i]

            undistortedMarker = cv2.undistortPoints(marker, CAMERA_MATRIX, DIST_COEFFS, P=newCameraMatrix)
            # print(marker)
            # print("------------")
            # print(undistortedMarker[0][i][0])
            # print(tvecs[i][0][0])
            # print(undistortedMarker[0][i])
            # print(undistortedMarker[0])


            x1 = marker[0][0][0]
            x2 = marker[0][2][0]
            y1 = marker[0][0][1]
            y2 = marker[0][2][1]
            xCenter = (x1 + x2)/2
            yCenter = (y1 + y2)/2


            # print("Original %s:" % ids[i][0])
            # print(marker)
            #
            # print('Undistorted %s:' % ids[i][0])
            # print(undistortedMarker)

            # x = tvecs[i][0][0]
            # y = tvecs[i][0][1]
            x = xCenter
            y = yCenter
            bearing = calc_bearing(rvecs[i][0])
            result.add((id, x,y,bearing))
        except Exception:
            traceback.print_exc()
    return result
    def startCalibration(self):
        global mybalance

        if flag_fisheye_calibrate == 0:

            N_OK = len(self.objpoints)
            self.camera_matrix = np.zeros((3, 3))
            self.distCoeffs = np.zeros((4, 1))
            self.rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
            self.tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]


            self.ret, _, _, _, _ = \
                cv2.calibrateCamera(
                objectPoints=self.objpoints, imagePoints=self.imgpoints, imageSize=(self.width, self.height),
                cameraMatrix=self.camera_matrix, distCoeffs=self.distCoeffs, rvecs=self.rvecs, tvecs=self.tvecs,
                flags=(cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW),
                criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # check the result of calibration
            print('RMS re-projection error is ', self.ret)
            print('distort Coeffs is ')
            print(self.distCoeffs)
            print('camera matrix is ')
            print(self.camera_matrix)

            # https://docs.opencv.org/3.0-beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#getoptimalnewcameramatrix
            self.new_camera_matrix, self.roi = cv2.getOptimalNewCameraMatrix(self.camera_matrix,
                                                                             self.distCoeffs,
                                                                             (self.width, self.height), 1.0,
                                                                             (self.width, self.height))
            print("self.roi is ", self.roi)

            ## self.roi or (self.width, self.height) ??
            self.map1, self.map2 = cv2.initUndistortRectifyMap(self.camera_matrix, self.distCoeffs, np.eye(3),
                                                               self.new_camera_matrix,
                                                               (self.width, self.height),
                                                               cv2.CV_16SC2)


        else:

            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(self.objpoints, self.imgpoints, (self.width, self.height), None, None)
            # you should write all the cv2.fisheye.CALIB_..3 things .. then it works



            # # The result is same with originally works
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_FIX_SKEW,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # No good results at all
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_CHECK_COND,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # No good results at all
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_FIX_INTRINSIC,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # Does not work at all
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None)

            # originally works
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # originally works
            print('before calibartion, width_train, height_train is ', self.width_train, self.height_train)
            N_OK = len(self.objpoints)
            self.camera_matrix = np.zeros((3, 3))
            self.distCoeffs = np.zeros((4, 1))
            self.rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
            self.tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
            self.ret, _, _, _, _ = cv2.fisheye.calibrate(
                objectPoints=self.objpoints,
                imagePoints=self.imgpoints,
                image_size=(self.width_train, self.height_train),
                K=self.camera_matrix,
                D=self.distCoeffs,
                rvecs=None,  # self.rvecs,
                tvecs=None,  # self.tvecs,
                flags=(cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_FIX_SKEW + cv2.fisheye.CALIB_CHECK_COND), #  cv2.fisheye.CALIB_FIX_PRINCIPAL_POINT
                criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, 1e-6))

        # check the result of calibration
        print('camera matrix is ')
        print(self.camera_matrix)
        # print('self.rvecs is ')
        # print(self.rvecs)
        # print('self.tvecs is ')
        # print(self.tvecs)
        print('distort Coeffs is ')
        print(self.distCoeffs)
        print('RMS re-projection error is ', self.ret)
        print('balance is ', mybalance)
        print("calibration complete")
# Save camera calibration information for later
np.savez(save_path,
         cam_matrix=cam_matrix,
         distortion_coeff=distortion_coeff,
         rotation_vecs=rotation_vecs,
         translation_vecs=translation_vecs)

# Calculate the re-projection error
mean_error = 0
for i in range(len(obj_points)):
    img_points2, _ = cv2.projectPoints(obj_points[i], rotation_vecs[i], translation_vecs[i],
                                       cam_matrix, distortion_coeff)
    error = cv2.norm(img_points[i], img_points2, cv2.NORM_L2) / len(img_points2)
    mean_error += error

print('Total Error: {:.4f}%'.format((100*mean_error) / len(obj_points)))


img = cv2.imread('images/calibration/leftsample/frame1.png')
h,  w = img.shape[:2]

new_cam_matrix, roi = cv2.getOptimalNewCameraMatrix(cam_matrix, distortion_coeff, (w, h), 1, (w, h))

# undistort
dst = cv2.undistort(img, cam_matrix, distortion_coeff, None, new_cam_matrix)

# crop the image
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('undistorted_left.png', dst)
Exemple #34
0
        #cv2.imwrite('{}.corners.jpg'.format(fnameR), imgR)
    else:
        print("NO: {}".format(fname))
        #os.remove(fname)
        #os.remove(fnameR)

# sys.exit(0)

# Calibrate individual images.
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(
    objpoints, imgpointsL, grayL.shape[::-1], None, None)
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(
    objpoints, imgpointsR, grayR.shape[::-1], None, None)

h, w = grayL.shape[:2]
newcameramtxL, roiL = cv2.getOptimalNewCameraMatrix(mtxL, distL, (w, h), 1,
                                                    (w, h))
newcameramtxR, roiR = cv2.getOptimalNewCameraMatrix(mtxR, distR, (w, h), 1,
                                                    (w, h))

# Rectify image pair.
img = cv2.imread("img/good/pi2_25_good.jpg")
dst = cv2.undistort(img, mtxL, distL, None, newcameramtxL)
x, y, w, h = roiL
print("{} {} {} {}".format(x, y, w, h))
dst = dst[y:y + h, x:x + w]
cv2.imwrite("img/pi2_25_rectified.jpg", dst)

img = cv2.imread("img/good/pi1_25_good.jpg")
dst = cv2.undistort(img, mtxR, distR, None, newcameramtxR)
print("{} {} {} {}".format(x, y, w, h))
dst = dst[y:y + h, x:x + w]
Exemple #35
0
K = np.load('./camera_params2/K.npy')
dist = np.load('./camera_params2/dist.npy')

#Specify image paths
img_path1 = './construct_samples/9l.jpg'
img_path2 = './construct_samples/9r.jpg'

#Load pictures
img_1 = cv2.imread(img_path1)
img_2 = cv2.imread(img_path2)

#Get height and width. Note: It assumes that both pictures are the same size. They HAVE to be same size and height. 
h,w = img_2.shape[:2]

#Get optimal camera matrix for better undistortion 
new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(K,dist,(w,h),1,(w,h))

#Undistort images
img_1_undistorted = cv2.undistort(img_1, K, dist, None, new_camera_matrix)
img_2_undistorted = cv2.undistort(img_2, K, dist, None, new_camera_matrix)

#Downsample each image 3 times (because they're too big)
img_1_downsampled = downsample_image(img_1_undistorted,1)
img_2_downsampled = downsample_image(img_2_undistorted,1)

#cv2.imwrite('undistorted_left.jpg', img_1_downsampled)
#cv2.imwrite('undistorted_right.jpg', img_2_downsampled)


#Set disparity parameters
#Note: disparity range is tuned according to specific parameters obtained through trial and error. 
Exemple #36
0
    FPS = video.get(cv2.CAP_PROP_FPS)
    width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
    height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
    size = (int(width), int(height))
    total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)
    frame_lapse = (1/FPS)*1000

    #Initializes the export video file
    codec = cv2.VideoWriter_fourcc(*'DIVX')
    video_out = cv2.VideoWriter(str(filename[:-4])+'_undistored.avi', codec, FPS, size, 1)

    #Initializes the frame counter
    current_frame = 0
    start = time.clock()
    
    newMat, ROI = cv2.getOptimalNewCameraMatrix(intrinsic_matrix, distCoeff, size, alpha = crop, centerPrincipalPoint = 1)
    mapx, mapy = cv2.initUndistortRectifyMap(intrinsic_matrix, distCoeff, None, newMat, size, m1type = cv2.CV_32FC1)

    while current_frame < total_frames:
        success, image = video.read()
        current_frame = video.get(cv2.CAP_PROP_POS_FRAMES)

        dst = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR)
        #dst = cv2.undistort(image, intrinsic_matrix, distCoeff, None)
    
        video_out.write(dst)
    
    video.release()
    video_out.release()
    duration = (time.clock()-float(start))/60
Exemple #37
0
import cv2
import numpy as np
from new_find import make

# 导入前面fix.py 计算的镜头内外参数
u = np.load('./fix_camera/parameter/u.npy')
v = np.load('./fix_camera/parameter/v.npy')
mtx = np.load('./fix_camera/parameter/mtx.npy')
dist = np.load('./fix_camera/parameter/dist.npy')

newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (u, v), 0, (u, v))

#打开摄像机
camera = cv2.VideoCapture(1)
camera.set(3, 1980)
camera.set(4, 1080)
frame_num = 1
x1 = 0
fps = camera.get(cv2.CAP_PROP_FPS)
while True:
    (grabbed, frame) = camera.read()
    h1, w1 = frame.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (u, v), 0,
                                                      (u, v))
    if frame_num >= 0:
        # 纠正畸变
        dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)
        #dst2 = cv2.undistort(frame, mtx, dist, None, newcameramtx)
        mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx,
                                                 (w1, h1), 5)
        dst2 = cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR)
Exemple #38
0
def detect_image_orb(img1, mtx, dist):
    # Número mínimo de pontos que devem ser encontrados na câmera para determinar se o poster está ali ou não
    MIN_MATCHES = 32

    # Usar o algoritmo ORB (Oriented FAST and Rotated BRIEF) para detectar características-chave das imagens
    # nfeatures indica o número de pontos-chave da imagem do poster que serão usados para caracterizá-lo,
    # enquanto scoreType indica o critério de escolha dos pontos
    orb = cv2.ORB_create(nfeatures=1000, scoreType=cv2.ORB_FAST_SCORE)

    # Usa o detector ORB para identificar os pontos-chave e descritores do poster
    kp1, des1 = orb.detectAndCompute(img1, None)

    # Webcam
    cap = cv2.VideoCapture(0)

    # A partir das dimensões do primeiro frame e da matriz de correção, é gerada uma matriz para a câmera e a região de interesse (roi)
    _, img = cap.read()
    h, w = img.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))

    # mapx, mapy são os fatores de correção que serão aplicados em cada frame para eliminar a distorção
    mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), 5)

    while True:
        # A cada iteração, captura um frame
        _, img2 = cap.read()

        # Retorna o frame corrigido a partir dos parâmetros 'mapx' e 'mapy'
        corr = cv2.remap(img2, mapx, mapy, cv2.INTER_LINEAR)

        # Limita a imagem apenas à região de interesse
        x, y, w, h = roi
        img2 = corr[y:y + h, x:x + w]

        # Usa o detector ORB para identificar os pontos-chave e descritores da imagem da webcam
        kp2, des2 = orb.detectAndCompute(img2, None)

        # Para comparar as características-chave (vetores "descritors") do poster com as características da imagem da câmera,
        # Será usado um algoritmo FLANN (Fast approximate nearest neighbour) para essa comparação
        # index_params são parâmetros recomendados pela documentação do OpenCV
        index_params = dict(algorithm=6,            # Pontos serão associados com Locality Sensitivy Hashing
                            table_number=6,         # O número de tabelas de hashing
                            key_size=12,            # O tamanho da chave nas tabelas
                            multi_probe_level=2)    # O número de níves em que o algoritmo será executado
        # A função pede um argumento para parâmetros de pesquisa, que neste caso será deixado em branco
        search_params = {}
        # Configura o comparador FLANN com os parâmetros acima
        flann = cv2.FlannBasedMatcher(index_params, search_params)

        # Usa o comparador FLANN para relacionar pontos da câmera com pontos do poster
        matches = flann.knnMatch(des1, des2, k=2)  # Error on blurred

        # Filtra os pontos encontrados usando o teste de razão de Lowe
        good_matches = []
        matches = [x for x in matches if x and len(x) == 2]  # Garantir que só haverão pontos (x,y) no vetor
        for m, n in matches:
            if m.distance < 0.75 * n.distance:
                good_matches.append(m)

        # Se o número de pontos encontrados for maior do que o mínimo arbitrado, consideramos que a imagem foi encontrada
        if len(good_matches) > MIN_MATCHES:
            # Bloco try para detectar erros na transformação de perspectiva
            try:
                # Extrair os pontos da câmera e da imagem identificados anteriormente
                src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
                dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)

                # Define a região da imagem identificada na câmera (homografia da imagem original)
                M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
                # Com as dimensões da imagem original, define uma matriz de pontos que constituem o contorno dela
                h, w = img1.shape
                pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)

                # Converte a matriz do contorno da imagem para a perspectiva da câmera
                dst = cv2.perspectiveTransform(pts, M)

                # Desenha uma linha em volta da imagem identificada na webcam
                img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)

            # Se ocorrer, imprime o erro e apenas mostra a imagem da câmera
            except Exception as e:
                print(e)

        # Mostra a variável img2
        cv2.imshow('Reconhecido', img2)

        # Encerra o programa quando aperta a tecla 'q'
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
Exemple #39
0
def detect_image_surf(img1, mtx, dist):
    # Número mínimo de pontos-chave criados na imagem do poster para caracterizá-lo
    minHessian = 500

    # Número mínimo de pontos que devem ser encontrados na câmera para determinar se o poster está ali ou não
    minMatches = 80

    # Usar o algoritmo SURF (Speeded-Up Robust Features) para detectar características-chave das imagens
    detector = cv2.xfeatures2d_SURF.create(hessianThreshold=minHessian)

    # Usa o detector SURF para identificar os pontos-chave e descritores do poster
    keypoints1, descriptors1 = detector.detectAndCompute(img1, None)

    # Para comparar as características-chave (vetores "descritors") do poster com as características da imagem da câmera,
    # Será usado um algoritmo FLANN (Fast approximate nearest neighbour) para essa comparação
    matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_FLANNBASED)

    # Webcam
    cap = cv2.VideoCapture(0)

    # A partir das dimensões do primeiro frame e da matriz de correção, é gerada uma matriz para a câmera e a região de interesse (roi)
    _, img = cap.read()
    h, w = img.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))

    # mapx, mapy são os fatores de correção que serão aplicados em cada frame para eliminar a distorção
    mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), 5)

    while True:
        # A cada iteração, captura um frame
        _, img2 = cap.read()

        # Retorna o frame corrigido a partir dos parâmetros 'mapx' e 'mapy'
        img2 = cv2.remap(img2, mapx, mapy, cv2.INTER_LINEAR)

        # Limita a imagem apenas à região de interesse
        x, y, w, h = roi
        img2 = img2[y:y + h, x:x + w]

        # Usa o detector SURF para identificar os pontos-chave e descritores da imagem da webcam
        keypoints2, descriptors2 = detector.detectAndCompute(img2, None)

        # Usa o comparador FLANN para relacionar pontos da câmera com pontos do poster
        knn_matches = matcher.knnMatch(descriptors1, descriptors2, 2)

        # Filtra os pontos encontrados usando o teste de razão de Lowe
        good_matches = []
        for m, n in knn_matches:
            if m.distance < 0.7 * n.distance:
                good_matches.append(m)

        # Se o número de pontos encontrados for maior do que o mínimo arbitrado, consideramos que a imagem foi encontrada
        if len(good_matches) > minMatches:
            # Bloco try para detectar erros na transformação de perspectiva
            try:
                # Extrair os pontos da câmera e da imagem identificados anteriormente
                src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
                dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)

                # Define a região da imagem identificada na câmera (homografia da imagem original)
                M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
                # Com as dimensões da imagem original, define uma matriz de pontos que constituem o contorno dela
                h, w = img1.shape
                pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
                # Converte a matriz do contorno da imagem para a perspectiva da câmera
                dst = cv2.perspectiveTransform(pts, M)
                # Desenha uma linha em volta da imagem identificada na webcam
                img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)

            # Se ocorrer, imprime o erro e apenas mostra a imagem da câmera
            except Exception as e:
                print(e)

        # Mostra a variável img2
        cv2.imshow('Reconhecido', img2)

        # Encerra o programa quando aperta a tecla 'q'
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
Exemple #40
0
R = np.eye(3, dtype=np.float64)

ret, M1, d1, M2, d2, R, T, E, F = cv2.stereoCalibrate(
    objpoints,
    imgpoints_l,
    imgpoints_r,
    M1,
    d1,
    M2,
    d2,
    img_shape,
    criteria=stereocalib_criteria,
    flags=flags)

# get new optimal camera matrix
newCamMtx1, roi1 = cv2.getOptimalNewCameraMatrix(M1, d1, img_shape, 1,
                                                 img_shape)
newCamMtx2, roi2 = cv2.getOptimalNewCameraMatrix(M2, d2, img_shape, 1,
                                                 img_shape)

# rectification and undistortion maps which can be used directly to correct the stereo pair
(
    rectification_l, rectification_r, projection_l, projection_r,
    disparityToDepthMap, ROI_l, ROI_r
) = cv2.stereoRectify(
    M1,
    d1,
    M2,
    d2,
    img_shape,
    R,
    T,
Exemple #41
0
def test_calibrate():
    flags = (cv2.CALIB_CB_EXHAUSTIVE + cv2.CALIB_CB_ACCURACY +
             cv2.CALIB_CB_MARKER)  # for findChessboardCornersSB
    obj_points = []
    img_points_r = []
    img_points_l = []
    img_shape = None
    chess_img_r = None
    chess_img_l = None
    corners_l = None
    corners_r = None

    objp = np.zeros((np.prod(CHESSBOARD_SIZE), 3), dtype=np.float32)
    objp[:, :2] = np.mgrid[0:CHESSBOARD_SIZE[0],
                           0:CHESSBOARD_SIZE[1]].T.reshape(-1, 2)

    for i in range(1, 113):
        t = str(i)
        chessboard_l_found = False
        chessboard_r_found = False
        corners_l = None
        corners_r = None
        chess_img_l = cv2.imread('{0}/chessboard-L{1}.png'.format(DIR_NAME, t),
                                 0)
        chess_img_r = cv2.imread('{0}/chessboard-R{1}.png'.format(DIR_NAME, t),
                                 0)
        img_shape = chess_img_r.shape[:2]
        try:
            chessboard_l_found, corners_l = cv2.findChessboardCornersSB(
                chess_img_l, CHESSBOARD_SIZE, flags=flags)
            chessboard_r_found, corners_r = cv2.findChessboardCornersSB(
                chess_img_r, CHESSBOARD_SIZE, flags=flags)
        except Exception as ex:
            print('error finding chessboard {0}'.format(t))

        if chessboard_l_found == True & chessboard_r_found == True:
            print('Found {0}'.format(t))
            obj_points.append(objp)
            img_points_l.append(corners_l)
            img_points_r.append(corners_r)

    # calibrate cameras
    ret_l, K_l, dist_l, rvecs_l, tvecs_l = cv2.calibrateCamera(
        obj_points, img_points_l, chess_img_l.shape[::-1], None, None)
    ret_r, K_r, dist_r, rvecs_r, tvecs_r = cv2.calibrateCamera(
        obj_points, img_points_r, chess_img_r.shape[::-1], None, None)

    new_camera_matrix_l, roi_l = cv2.getOptimalNewCameraMatrix(
        K_l, dist_l, img_shape, 1, img_shape)
    new_camera_matrix_r, roi_r = cv2.getOptimalNewCameraMatrix(
        K_r, dist_r, img_shape, 1, img_shape)

    left_camera = (new_camera_matrix_l, K_l, dist_l)
    with open('camera_matrix_l.pickle', 'wb') as handle:
        pickle.dump(left_camera, handle, protocol=HIGHEST_PROTOCOL)

    right_camera = (new_camera_matrix_r, K_r, dist_r)
    with open('camera_matrix_r.pickle', 'wb') as handle:
        pickle.dump(right_camera, handle, protocol=HIGHEST_PROTOCOL)

    # stereo calibrate
    stereocalib_criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
                            100, 1e-5)

    retS, matrix_l, dist_coef_l, matrix_r, dist_coef_r, R, T, E, F = cv2.stereoCalibrate(
        obj_points,
        img_points_l,
        img_points_r,
        new_camera_matrix_l,
        dist_l,
        new_camera_matrix_r,
        dist_r,
        img_shape,
        criteria=stereocalib_criteria,
        flags=cv2.CALIB_FIX_INTRINSIC)
    rot_l, rot_r, proj_l, proj_r, Q, roi_l, roi_r = cv2.stereoRectify(
        matrix_l, dist_coef_l, matrix_r, dist_coef_r, img_shape, R, T)

    print('retS.stereoCalibrate - ', retS, ' retL - ', ret_l, ' retR - ',
          ret_r)
    print('R: ', R)
    print('T:', T)

    left_map = cv2.initUndistortRectifyMap(matrix_l, dist_coef_l, rot_l,
                                           proj_l, img_shape, cv2.CV_16SC2)
    right_map = cv2.initUndistortRectifyMap(matrix_r, dist_coef_r, rot_r,
                                            proj_r, img_shape, cv2.CV_16SC2)

    stereo_map = (left_map, right_map)
    with open('stereo_map.pickle', 'wb') as handle:
        pickle.dump(stereo_map, handle, protocol=HIGHEST_PROTOCOL)

    cameras = Cameras()
    while True:
        frame_l, frame_r = cameras.grab_one()

        res = np.hstack((frame_l, frame_r))
        cv2.imshow('original', res)

        print('roi_l:', roi_l, ' - roi_r:', roi_r)
        ret = cv2.getValidDisparityROI(roi_l, roi_r, 1, 10, 5)
        print(ret)

        left_rectified = cv2.remap(frame_l,
                                   left_map[0],
                                   left_map[1],
                                   interpolation=cv2.INTER_LANCZOS4,
                                   borderMode=cv2.BORDER_CONSTANT)
        right_rectified = cv2.remap(frame_r,
                                    right_map[0],
                                    right_map[1],
                                    interpolation=cv2.INTER_LANCZOS4,
                                    borderMode=cv2.BORDER_CONSTANT)
        cv2.imshow('left_rectified', left_rectified)
        cv2.imshow('right_rectified', right_rectified)

        img_to_use_l = left_rectified
        img_to_use_r = right_rectified

        chessboard_l_found, corners_l = cv2.findChessboardCorners(
            img_to_use_l, CHESSBOARD_SIZE, None)
        chessboard_r_found, corners_r = cv2.findChessboardCorners(
            img_to_use_r, CHESSBOARD_SIZE, None)
        print(chessboard_l_found, chessboard_r_found)
        if chessboard_l_found == True & chessboard_r_found == True:
            print('point_l: ', corners_l[0][0][0])
            print('point_r: ', corners_r[0][0][0])
            disparity_maybe = corners_l[0][0][0] - corners_r[0][0][0]
            disp_may = (corners_l[0][0][0], corners_l[0][0][1],
                        disparity_maybe)
            np_disp = np.array(
                [[[corners_l[0][0][0], corners_l[0][0][1], disparity_maybe]]],
                dtype=np.float32)
            new_coord = cv2.perspectiveTransform(np_disp, Q)
            print('new_coord: ', new_coord)

        k = cv2.waitKey(0) & 0xFF
        if k == 115:
            cv2.imwrite('{0}/img-L.png'.format(DIR_NAME), frame_l)
            cv2.imwrite('{0}/img-R.png'.format(DIR_NAME), frame_r)
        if k == 27:
            break
Exemple #42
0
    else:
        print("   no points found.")

# cv2.destroyAllWindows()

assert gray is not None

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints,
                                                   gray.shape[::-1], None,
                                                   None)

img = cv2.imread('IMG_0035.JPG')
h, w = img.shape[:2]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx,
                                                  dist,
                                                  imageSize=(w, h),
                                                  alpha=0,
                                                  newImgSize=(w, h))

# undistort
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h),
                                         5)
dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)

# crop the image
x, y, w, h = roi
dst = dst[y:y + h, x:x + w]
cv2.imwrite('calibresult.png', dst)

tot_error = 0
Exemple #43
0
import cv2
import numpy as np

from calib_store import load_coefficients

if __name__ == '__main__':

    image = cv2.imread("../data/image22.png", 1)

    K, D = load_coefficients("./cam_calib.yml")
    K = np.array(K, dtype=np.float64).reshape((3, 3))
    D = np.array(D, dtype=np.float64).reshape((1, 5))

    h, w = image.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(K, D, (w, h), 1, (w, h))
    mapx, mapy = cv2.initUndistortRectifyMap(K, D, None, newcameramtx, (w, h),
                                             5)
    dst = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR)
    dst = dst[90:h - 90, 160:w - 160, :]

    cv2.imshow("image", dst)
    cv2.waitKey(10000)
Exemple #44
0
    # positions, _, _, rvec, tvec = getPositions(frame, mtx, dist, planebots.MarkerDictionary, planebots.DetectionParameters,
    #                                            calIds, calPositions, rvec, tvec)
    # pts, jac = cv2.projectPoints(positions, rvec, tvec, mtx, dist)
    # drawGridPoints(frame, pts)
    #
    # # defining the corner points
    # framevertices = np.array([[[0, 0], frame.shape[1::-1]]], np.float32)
    #
    #
    corners, ids, rej = cv2.aruco.detectMarkers(frame,
                                                planebots.MarkerDictionary,
                                                None, None,
                                                planebots.DetectionParameters,
                                                None)
    newmtx, newroi = cv2.getOptimalNewCameraMatrix(mtx, dist,
                                                   frame.shape[1::-1], 1,
                                                   frame.shape[1::-1])
    # newpts = cv2.undistortPoints(framevertices, newmtx, dist)
    n = 5
    m = 6
    x, y = np.meshgrid(np.linspace(0, frame.shape[1], n),
                       np.linspace(0, frame.shape[0], m))
    # # gr = np.ogrid()
    # gridpoints = np.array([x, y]).swapaxes(0, 2)
    # drawGridPoints(frame, gridpoints, color=(255, 0, 122))
    #
    # cv2.imwrite('detection1.png', frame)

    # newmtx, newroi = cv2.getOptimalNewCameraMatrix(mtx, dist, frame.shape[1::-1], 1, frame.shape[1::-1])
    flatpoints = np.array([[x.flatten(), y.flatten()]],
                          np.float64).swapaxes(1, 2)
Exemple #45
0
        imgpoints.append(corners)

        # Draw and display the corners
        cv2.drawChessboardCorners(img, PATTERN_SIZE, corners, ret)
        cv2.imshow('img', img)
        cv2.waitKey(500)

cv2.destroyAllWindows()

ret, mtxl, distl, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints,
                                                     gray.shape[::-1], None,
                                                     None)

img = cv2.imread(random.choice(imagesl))
h, w = img.shape[:2]
newcameramtxl, roi = cv2.getOptimalNewCameraMatrix(mtxl, distl, (w, h), 1,
                                                   (w, h))

calibration_data['mtxl'] = mtxl
calibration_data['distl'] = distl
calibration_data['newcameramtxl'] = newcameramtxl

print("mtxl: {}".format(mtxl))
print("distl: {}".format(distl))
print("newcameramtxl: {}".format(newcameramtxl))

# undistort
dst = cv2.undistort(img, mtxl, distl, None, newcameramtxl)
cv2.imshow('calibresult', dst)

cv2.waitKey(0)
Exemple #46
0
                t += 1
            if (True == retR) & (True == retL):
                time.sleep(0.50)
        cv2.imshow('left', leftFrame)
        cv2.imshow('right', rightFrame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
print(
    "Fin de la prise de vue du damier de calibration, début du calcul des données de calibration"
)

hR, wR = rightFrame.shape[:2]
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(
    objpoints, imgpointsR, (hR, wR), None, None)
OmtxR, roiR = cv2.getOptimalNewCameraMatrix(mtxR, distR, (wR, hR), 1, (wR, hR))
hL, wL = leftFrame.shape[:2]
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(
    objpoints, imgpointsL, (hL, wL), None, None)
OmtxL, roiL = cv2.getOptimalNewCameraMatrix(mtxL, distL, (wL, hL), 1, (wL, hL))
flags = 0
flags |= cv2.CALIB_FIX_INTRINSIC
retS, MLS, dLS, MRS, dRS, R, T, E, F = cv2.stereoCalibrate(
    objpoints, imgpointsL, imgpointsR, mtxL, distL, mtxR, distR, (hR, wR),
    criteria_stereo, flags)
rectify_scale = 1
RL, RR, PL, PR, Q, roiL, roiR = cv2.stereoRectify(MLS, dLS, MRS, dRS, (hR, wR),
                                                  R, T, rectify_scale, (0, 0))
Left_Stereo_Map = cv2.initUndistortRectifyMap(MLS, dLS, RL, PL, (wR, hR),
                                              cv2.CV_16SC2)
Right_Stereo_Map = cv2.initUndistortRectifyMap(MRS, dRS, RR, PR, (wR, hR),
Exemple #47
0
    intrinsic = np.load("intrinsic.npy")
    distortion = np.load("distortion.npy")

    #all the markers that we know of so far
    markers = set()

    #the relative tvec locations between markers

    frames = 0

    arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_5X5_1000)

    #get optimal camera matrix to undistort the image
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(intrinsic, distortion,
                                                      (1920, 1080), 1,
                                                      (1920, 1080))

    #create aruco detector
    aruco_detector = ArUcoDetector(intrinsic,
                                   distortion,
                                   arucoDict,
                                   square_length=0.05)

    curr_figure = None

    #setting up plotting for the tvecs
    aruco_fig = plt.figure()

    aruco_tvec_ax = aruco_fig.add_axes(projection="3d")
Exemple #48
0
    print("\nRMS:", rms)
    print("camera matrix:\n", camera_matrix)
    print("distortion coefficients: ", dist_coefs.ravel())

    # undistort the image with the calibration
    print('')
    for fn in img_names if debug_dir else []:
        path, name, ext = splitfn(fn)
        img_found = os.path.join(debug_dir, name + '_chess.png')
        outfile = os.path.join(debug_dir, name + '_undistorted.png')

        img = cv.imread(img_found)
        if img is None:
            continue

        h, w = img.shape[:2]
        newcameramtx, roi = cv.getOptimalNewCameraMatrix(
            camera_matrix, dist_coefs, (w, h), 1, (w, h))

        dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)

        # crop and save the image
        x, y, w, h = roi
        dst = dst[y:y + h, x:x + w]

        print('Undistorted image written to: %s' % outfile)
        cv.imwrite(outfile, dst)

    cv.destroyAllWindows()
def CalibrateCamera(directory, visualize=False):
    # termination criteria
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    # here we only care about computing the intrinsic parameters of the camera
    # and not the true positions of the checkerboard, so we can do everything
    # up to a scale factor, this means we can prepare our object points as
    # (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) representing the coordinates
    # of the corners in the checkerboard's local coordinate frame
    # if we cared about exact position we would need to scale these according
    # to the true size of the checkerboard
    objp = np.zeros((9 * 6, 3), np.float32)
    objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
    # Set up arrays to store object points and image points from all the images
    # Here the image points are the 2d positions of the corners in each image
    # the object points are the true 3d positions of the corners in the
    # checkerboards coordinate frame
    objpoints = []  # 3d point in the checkerboard's coordinate frame
    imgpoints = []  # 2d points in image plane.
    # Grab all images in the directory
    images = glob.glob(directory + '/*.jpg')
    for fname in images:
        # read the image
        img = cv2.imread(fname)
        img = cv2.resize(img,
                         None,
                         fx=0.19,
                         fy=0.19,
                         interpolation=cv2.INTER_AREA)
        #w,h = cv2.GetSize(img)
        #print(w,h)
        # convert to grayscale (this simplifies corner detection)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # Find the chess board corners
        ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
        # If found, add object points, image points (after refining them)
        # This ensures that only images where all corners could be detected are
        # used for calibration
        if ret == True:
            # the object points in the checkerboard frame are always the same
            # so we just duplicate them for each image
            objpoints.append(objp)
            # refine corner locations, initial corner detection is performed by
            # sliding a convultional filter across the image, so accuracy is
            # at best 1 pixel, but from the image gradient we can compute the
            # location of the corner at sub-pixel accuracy
            corners2 = \
                cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
            # append the refined pixel location to our image points array
            imgpoints.append(corners2)
            # if visualization is enabled, draw and display the corners
            if visualize == True:
                cv2.drawChessboardCorners(img, (9, 6), corners2, ret)
                cv2.imshow('Display', img)
                cv2.waitKey(500)

    # Perform camera calibration
    # Here I have fixed K3, the highest order distortion coefficient
    # This simplifies camera calibration and makes it easier to get a good
    # result, however this is only works under the assumption that your camera
    # does not have too much distortion, if your camera is very wide field of
    # view, you should remove this flag

    ret, intrinsics, distortion, rvecs, tvecs = \
        cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, \
                            None,flags=cv2.CALIB_FIX_K3,criteria=criteria)
    # print error if calibration unsuccessful
    if not ret:
        print("Calibration failed, recollect images and try again")
    # if successful, compute an print reprojection error, this is a good metric
    # for how good the calibration is. If your result is greater than 1px you
    # should probably recalibrate
    total_error = 0
    for i in range(len(objpoints)):
        # project the object points onto each camera image and compare
        # against the detected image positions
        imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], \
                                          intrinsics, distortion)
        error = cv2.norm(imgpoints[i], imgpoints2,
                         cv2.NORM_L2) / len(imgpoints2)
        total_error += error
    print("mean error: {}".format(total_error / len(objpoints)))
    # compute the region for where we have full information and the resulting
    # intrinsic calibration matrix
    h, w = img.shape[:2]
    new_intrinsics, roi = cv2.getOptimalNewCameraMatrix(
        intrinsics, distortion, (w, h), 1, (w, h))
    # return only the information we will need going forward
    cv2.destroyAllWindows()
    return intrinsics, distortion, roi, new_intrinsics
Exemple #50
0
        corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
        imgpoints.append(corners2)
        img = cv2.drawChessboardCorners(img, (5,9), corners2, ret)
        cv2.imshow('img',img)
        cv2.waitKey(500)
    else:
        print("ret: {}".format(ret))
        cv2.imshow('img',img)
        cv2.waitKey(500)
    
#cv2.destroyAllWindows()
print("Successful count: {}".format(cnt))
print("calibrating...")
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None, None)
h,w = first_match.shape[:2]
newmtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist,(w,h),0,(w,h))
print("Calibration values:")
print("mtx: {}".format(mtx))
print("dist: {}".format(dist))
print("rvecs: {}".format(rvecs))
print("tvecs: {}".format(tvecs))
print("newmtx: {}".format(newmtx))
print("roi: {}".format(roi))

mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newmtx, (w,h), 5)
dst = cv2.remap(first_match, mapx, mapy, cv2.INTER_LINEAR)
#x,y,w,h = roi
#dst = dst[y:y+h, x:x+w]

cv2.imshow('img', dst)
while True:
Exemple #51
0
            save_json({
                'camera_matrix': camera_matrix.tolist(),
                'dist_coeffs': dist_coeffs.tolist(),
                'err': err
            })

            print('...DONE')
        except Exception as e:
            print(e)
            success = False

        # Generate the corrections
        new_camera_matrix, valid_pix_roi = cv2.getOptimalNewCameraMatrix(
            camera_matrix,
            dist_coeffs,
            resolution,
            0)
        mapx, mapy = cv2.initUndistortRectifyMap(
            camera_matrix,
            dist_coeffs,
            None,
            new_camera_matrix,
            resolution,
            5)
        while True:
            frame = stream.read()
            if mapx is not None and mapy is not None:
                frame = cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR)

            cv2.imshow('frame', frame)
Exemple #52
0
    #CALIBRATION
        
	retval, cameraMatrix, distCoeffs, rotvecs, transvecs = cv2.calibrateCamera(objpoints,  imgpoints, gray.shape[::-1], None, None)
	
	#UNDISTORTION
    for x in range(0, 29):
        print x
        image1 = cv2.imread('/home/thor/Desktop/FYP/test_data/%s.jpg' %x) #distorted images
        image2 = cv2.resize(image1, (0, 0), fx=0.25, fy=0.25)
        image = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
	
        h, w = image.shape[:2]
        #print h
        #print w

        newcameramtx, roi=cv2.getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, (w, h), 1, (w, h))
        #print cameraMatrix
        #print newcameramtx
        #print roi

	    # undistort using cv2.undistort()
        dst = cv2.undistort(image, cameraMatrix, distCoeffs, None, newcameramtx)
	
	    # crop the image
        x, y, w, h = rois
        dst = dst[y:y+h, x:x+w]
        cv2.imshow('img', dst)
	cv2.waitKey(5000)
        cv2.imwrite('/home/thor/Desktop/FYP/undistortion_result/calibresul%s.jpg' %x, dst)

########################
Exemple #53
0
try:
    namedWindow('win')
    createTrackbar('alpha', 'win', 100, 100, getAlpha)
    W = int(cap.get(CAP_PROP_FRAME_WIDTH))
    H = int(cap.get(CAP_PROP_FRAME_HEIGHT))
    u = zeros((H * 2, W, 3), dtype='uint8')  # pre-initialize display
    while 1:
        # Interface
        cv_imshow('win', u)
        press = waitKey(20)
        if press in (27, 81, 113):
            break

        # Update Camera Matrix
        ncm, roi = getOptimalNewCameraMatrix(calib.cameraMatrix,
                                             calib.distCoeffs, (W, H),
                                             alpha_val)
        x, y, w, h = roi

        # Read frames and correct
        r, f = cap.read()
        if not r:
            logging.warning('Unable to read frame')
            continue
        _u1 = undistort(f,
                        calib.cameraMatrix,
                        calib.distCoeffs,
                        None,
                        newCameraMatrix=ncm)
        u1 = zeros((H, W, 3), dtype='uint8')
        u1[y:y + h, x:x + w] = _u1[y:y + h, x:x + w]
Exemple #54
0
    R_mtxs.append(rotation_mtx)
    extrinsic_mtxs.append(extrinsic_mtx)
    print("外参:")
    print(extrinsic_mtx)
    calib_result_extrinsic_fname = fname.replace('.png', 'extrinsic_mtx.npy')
    save_dict = {'tvec': tvec, 'rvec': rvec, 'extrinsic_mtx': extrinsic_mtx, 'rotation_mtx': rotation_mtx}
    np.save(calib_result_extrinsic_fname, save_dict)


# print("done")
# 去畸变
img2 = cv2.imread(root_dir + '115.png')
h,  w = img2.shape[:2]
dst = cv2.undistort(img2, mtx, dist)
cv2.imshow("distort", dst)
# cv2.imwrite('calibresult.png',dst)

# rgb相机去畸
rgb_image = img2
cv2.imshow("rgb", rgb_image)
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, rgb_image.shape[1::-1], 1)
map1, map2 = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, rgb_image.shape[1::-1], cv2.CV_32FC1)
rgb_image_undistort = cv2.remap(rgb_image, map1, map2, cv2.INTER_NEAREST)
rgb_intrinsic_mtx = newcameramtx
print("new rgb_camera mtx:\n", newcameramtx)
cv2.imshow("rgb_undistort", rgb_image_undistort)
cv2.waitKey(0)



Exemple #55
0
#     print("Object points do not match")
#     sys.exit(1)
objectPoints = leftObjectPoints

print("Calibrating left camera...")
_, leftCameraMatrix, leftDistortionCoefficients, _, _ = cv2.calibrateCamera(
    leftObjectPoints, leftImagePoints, imageSize, None, None)

leftImage = glob.glob("/Users/admin/Desktop/Robot/EIIC/left/*.png")
leftImage = sorted(leftImage)
saveLeft = "/Users/admin/Desktop/Robot/EIIC/outputCalibratedL/{:06d}.png"
frameLeft = 1
for i in leftImage:
    img = cv2.imread(i)
    h, w = img.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(
        leftCameraMatrix, leftDistortionCoefficients, (w, h), 1, (w, h))
    # undistort
    leftDistortionCoefficients = cv2.undistort(img, leftCameraMatrix,
                                               leftDistortionCoefficients,
                                               None, newcameramtx)
    # crop the image
    x, y, w, h = roi
    leftDistortionCoefficients = leftDistortionCoefficients[y:y + h, x:x + w]
    cv2.imwrite(saveLeft.format(frameLeft), leftDistortionCoefficients)
    frameLeft += 1
    print('Hello')

print("Calibrating right camera...")
_, rightCameraMatrix, rightDistortionCoefficients, _, _ = cv2.calibrateCamera(
    rightObjectPoints, rightImagePoints, imageSize, None, None)
Exemple #56
0
config = dict()

with open("config.json", "r") as config_file:
    config = json.load(config_file)

mtx = np.array(config["mtx"])
newcameramtx = np.array(config["newcameramtx"])
dist = np.array(config["dist"])

while (True):

    ret, frame = cap.read()

    if ret:

        cv2.imshow("frame", frame)

        h, w = frame.shape[:2]
        newcameramtx, roi = cv2.getOptimalNewCameraMatrix(
            mtx, dist, (w, h), 1, (w, h))
        x, y, w, h = roi
        img = cv2.undistort(frame, mtx, dist, None, newcameramtx)[y:y + h,
                                                                  x:x + w]

        cv2.imshow("undistorted", img)

    key = cv2.waitKey(100 // 60)
    if key == 27: break

cv2.destroyAllWindows()
    def calibrate(self, images_left_path, images_right_path, pattern_type='chessboard', pattern_size=(7,6)):
        """ Compute stereo parameters like a fundamental matrix, 
        rotation and traslation matrix and esential matrix.
        Arguments:
            images_left_path (str): folder where is saved left calibration pattern photos.
            images_right_path (str): folder where is saved right calibration pattern photos.
            pattern_type (str): It can be "circles" pattern or "chessboard" pattern (default).
            pattern_size (tuple): If pattern_type is "chessboard"  this the Number of inner corners per a chessboard row and column. But If pattern_type is "circles" this will be the number of circles per row and column. 
        Raises:
            OSError: If didn't find photos on images_left_path or images_right_path folders.
        """
        # adjust image path
        images_left, _ = os.path.splitext(images_left_path)
        images_right, _ = os.path.splitext(images_right_path)
        # available formats
        formats = ['*.svg', '*.png', '*.jpg', '*.bmp', '*.jpeg', '*.raw']
        # get files names
        filesL = [glob.glob((images_left + '/' + e)  if len(images_left) > 0 else e) for e in formats]
        filesR = [glob.glob((images_right + '/' + e)  if len(images_right) > 0 else e) for e in formats]
        # flatting files list
        imagesL = [item for sublist in filesL for item in sublist]
        imagesR = [item for sublist in filesR for item in sublist]
        # termination criteria
        criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
        
        # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
        objp = np.zeros((pattern_size[1]*pattern_size[0],3), np.float32)
        objp[:,:2] = np.mgrid[0:pattern_size[0],0:pattern_size[1]].T.reshape(-1,2)
        # Arrays to store object points and image points from all the images.
        objpoints = [] # 3d point in real world space
        imgpointsL = [] # 2d points in image plane.
        imgpointsR = [] # 2d points in image plane.
        try:
            if len(imagesL) == 0 or len(imagesR) == 0:
                raise OSError
            for imgLeft, imgRight in zip(imagesL, imagesR):
                imgL = cv.imread(imgLeft)
                imgR = cv.imread(imgRight)
                grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY)
                grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY)

                # Find the chess board corners
                if pattern_type == 'chessboard':
                    retL, cornersL = cv.findChessboardCorners(grayL, pattern_size, None)
                    retR, cornersR = cv.findChessboardCorners(grayR, pattern_size, None)
                elif pattern_type == 'circles':
                    retL, cornersL = cv.findCirclesGrid(grayL, pattern_size, None)
                    retR, cornersR = cv.findCirclesGrid(grayR, pattern_size, None)

                # If found, add object points, image points (after refining them)
                if retL and retR == True:

                    objpoints.append(objp)

                    cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (-1,-1), criteria)
                    imgpointsL.append(cornersL)

                    cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (-1,-1), criteria)
                    imgpointsR.append(cornersR)

                    # Draw and display the corners
                    # cv.drawChessboardCorners(imgL, pattern_size, cornersL, retL)
                    # cv.namedWindow('img left', cv.WINDOW_NORMAL)
                    # cv.imshow('img left', imgL)
                    # cv.drawChessboardCorners(imgR, pattern_size, cornersR, retR)
                    # cv.namedWindow('img right', cv.WINDOW_NORMAL)
                    # cv.imshow('img right', imgR)
                    # cv.waitKey(1000)
            
            flags = 0
            flags |= cv.CALIB_FIX_INTRINSIC
            # Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
            # Hence intrinsic parameters are the same 

            criteria_stereo= (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
            
            try:
                # This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
                print("Calibrating estereo...")
                self.ret_stereo, self.camL.matrix, self.camL.dist_coeffs, self.camR.matrix, self.camR.dist_coeffs, self.rot, self.trans, self.e_matrix, self.f_matrix = cv.stereoCalibrate(objpoints, imgpointsL, imgpointsR, self.camL.matrix, self.camL.dist_coeffs, self.camR.matrix, self.camR.dist_coeffs, grayL.shape[::-1], criteria_stereo, flags)
                print("system calibrated")
            except AttributeError:
                print("Camera parameters hasn't fixed")
                print("Fixing left camera...")
                self.camL.ret, self.camL.matrix, self.camL.dist_coeffs, self.camL.rvecs, self.camL.tvecs = cv.calibrateCamera(objpoints, imgpointsL, grayL.shape[::-1], None, None)
                heightL, widthL = imgL.shape[:2]
                self.camL.matrix, self.camL.roi = cv.getOptimalNewCameraMatrix(self.camL.matrix, self.camL.dist_coeffs, (widthL, heightL), 1, (widthL, heightL))
                errorL = re_projection_error(objpoints, self.camL.rvecs, self.camL.tvecs, self.camL.matrix, imgpointsL, self.camL.dist_coeffs)
                print("Left camera error {}".format(errorL))
                print("Fixing Right camera...")
                self.camR.ret, self.camR.matrix, self.camR.dist_coeffs, self.camR.rvecs, self.camR.tvecs = cv.calibrateCamera(objpoints, imgpointsR, grayR.shape[::-1], None, None)
                heightR, widthR = imgL.shape[:2]
                self.camR.matrix, self.camR.roi = cv.getOptimalNewCameraMatrix(self.camR.matrix, self.camR.dist_coeffs, (widthR, heightR), 1, (widthR, heightR))
                errorR = re_projection_error(objpoints, self.camR.rvecs, self.camR.tvecs, self.camR.matrix, imgpointsR, self.camR.dist_coeffs)
                print("Right camera error {}".format(errorR))
                print("Calibrating estereo...")
                # This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
                self.ret_stereo, self.camL.matrix, self.camL.dist_coeffs, self.camR.matrix, self.camR.dist_coeffs, self.rot, self.trans, self.e_matrix, self.f_matrix = cv.stereoCalibrate(objpoints, imgpointsL, imgpointsR, self.camL.matrix, self.camL.dist_coeffs, self.camR.matrix, self.camR.dist_coeffs, grayL.shape[::-1], criteria_stereo, flags)
                print("system calibrated")
            
        except OSError:
            if len(imagesL) == 0:
                print("Could not find any image in {}".format(images_left_path))
            if len(imagesR) == 0:
                print("Could not find any image in {}".format(images_right_path))
        imgpoints.append(corners2)
        op.append(objp)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(op, imgpoints,
                                                   b.shape[::-1], None, None)
tot_error = 0
for i in range(len(op)):
    imgpoints2, _ = cv2.projectPoints(op[i], rvecs[i], tvecs[i], mtx, dist)
    error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
    tot_error += error
# print(ret, (tot_error / len(op))**0.5)
# cv2.namedWindow('winname', cv2.WINDOW_NORMAL)
# cv2.imshow('winname', a)
# cv2.waitKey(0)
"""下面是校正部分"""
h, w = a.shape[:2]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (h, w), 1)
dst = cv2.undistort(a, mtx, dist, None)
# undistort
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h),
                                         5)
dst = cv2.remap(a, mapx, mapy, cv2.INTER_LINEAR)
# crop the image
# x, y, w, h = roi
# dst = dst[y:y + h, x:x + w]
print(mapx.shape)
print(mapy)
np.savez("outfile", mtx, dist)
a = cv2.cvtColor(a, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
# print(roi)
plt.subplot(121), plt.imshow(a), plt.title('source')
    def startCalibration(self):
        global mybalance

        if flag_fisheye_calibrate == 0:
            self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.calibrateCamera(
                self.objpoints, self.imgpoints, (self.width, self.height), None, None)

            # check the result of calibration
            print("self.camera_matrix=np.array(" + str(self.camera_matrix.tolist()) + ")")
            print("self.distCoeffs=np.array(" + str(self.distCoeffs.tolist()) + ")")

            # https://docs.opencv.org/3.0-beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#getoptimalnewcameramatrix
            self.new_camera_matrix, self.roi = cv2.getOptimalNewCameraMatrix(self.camera_matrix,
                                                                             self.distCoeffs,
                                                                             (self.width, self.height), mybalance,
                                                                             (self.width, self.height))
            print("self.roi is ", self.roi)

            ## self.roi or (self.width, self.height) ??
            self.map1, self.map2 = cv2.initUndistortRectifyMap(self.camera_matrix, self.distCoeffs, np.eye(3),
                                                               self.new_camera_matrix,
                                                               (self.width, self.height),
                                                               cv2.CV_16SC2)

        else:
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(self.objpoints, self.imgpoints, (self.width, self.height), None, None)
            # you should write all the cv2.fisheye.CALIB_..3 things .. then it works



            # # The result is same with originally works
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_FIX_SKEW,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # No good results at all
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_CHECK_COND,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # No good results at all
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_FIX_INTRINSIC,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # Does not work at all
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None)

            # originally works
            # self.ret, self.camera_matrix, self.distCoeffs, self.rvecs, self.tvecs = cv2.fisheye.calibrate(
            #     self.objpoints, self.imgpoints, (self.width, self.height), None, None, None, None,
            #     cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW,
            #     (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

            # originally works
            N_OK = len(self.objpoints)
            self.camera_matrix = np.zeros((3, 3))
            self.distCoeffs = np.zeros((4, 1))
            self.rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
            self.tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
            self.ret, _, _, _, _ = cv2.fisheye.calibrate(
                objectPoints=self.objpoints,
                imagePoints=self.imgpoints,
                image_size=(self.width, self.height),
                K=self.camera_matrix,
                D=self.distCoeffs,
                rvecs=None,#self.rvecs,
                tvecs=None,#self.tvecs,
                flags=(cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC),#+ cv2.fisheye.CALIB_FIX_SKEW), # +cv2.fisheye.CALIB_FIX_PRINCIPAL_POINT cv2.fisheye.CALIB_CHECK_COND
                criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, 1e-6))

            # check the result of calibration
            print('camera matrix is ')
            print(self.camera_matrix)
            # print('new camera Matrix is ')
            # print(self.new_camera_matrix)
            # print('self.rvecs is ')
            # print(self.rvecs)
            # print('self.tvecs is ')
            # print(self.tvecs)
            print('distort Coeffs is ')
            print(self.distCoeffs)
            print('RMS re-projection error is ', self.ret)
            print('balance is ', mybalance)
            print('f**k')

            # self.distCoeffs = np.zeros((4, 1))
            self.roi = [0,0,0,0]

            # check the result of calibration
            print('camera matrix is ')
            print(self.camera_matrix)
            # print('new camera Matrix is ')
            # print(self.new_camera_matrix)
            print('distort Coeffs is ')
            print(self.distCoeffs)
            # print('self.roi is ', self.roi)
            print('fuck2')

            self.new_camera_matrix = self.camera_matrix
            self.map1 = 0
            self.map2 = 0
            # self.new_camera_matrix = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(K=self.camera_matrix,
            #                                                                                 D=self.distCoeffs,
            #                                                                                 image_size=(self.width, self.height),
            #                                                                                 R=np.eye(3),
            #                                                                                 P=None,
            #                                                                                 balance=mybalance,
            #                                                                                 new_size=(self.width, self.height),
            #                                                                                 fov_scale=1.0
            #                                                                                 )
            # # check the result of calibration
            # print('camera matrix is ')
            # print(self.camera_matrix)
            # print('new camera Matrix is ')
            # print(self.new_camera_matrix)
            # print('distort Coeffs is ')
            # print(self.distCoeffs)
            #
            # # https://medium.com/@kennethjiang/calibrate-fisheye-lens-using-opencv-part-2-13990f1b157f
            # self.map1, self.map2 = cv2.fisheye.initUndistortRectifyMap(K=self.camera_matrix,
            #                                                            D=self.distCoeffs,
            #                                                            R=np.eye(3),
            #                                                            P=self.new_camera_matrix,
            #                                                            size=(self.width, self.height),
            #                                                            m1type=cv2.CV_32FC1)

        tmp = np.array(self.map1)
        print("self.map1 is ", tmp.shape)
        tmp = np.array(self.map2)
        print("self.map2 is ", tmp.shape)
        # http://opencv-users.1802565.n2.nabble.com/Re-what-is-CV-32FC1-td6684091.html
        # CV_<bit_depth>(S|U|F)C<number_of_channels>
        # bit_depth is number of bits per element in matrix.supported bit. depth are 8, 16, 32, and 84.
        # S = signed, U = unsigned, F = float
        # number_of_channels is of course number of channels, in term of matrix you can think of this as third dimension

        print("calibration complete")
Exemple #60
0
import numpy as np
import cv2
from matplotlib import pyplot as plt

# Define camera matrix K
K = np.array([[4479.94, 0., 2727.48], [0., 4374.51, 1811.92], [0., 0., 1.]])

# Define distortion coefficients d
d = np.array([-0.0196948, 0.00652119, 0.000237354, 0.00108494, 0.0909295])

# Read an example image and acquire its size
img = cv2.imread("C:\Tal's DATA\Testim\BGU Campus\BackYard\DJI_0008.JPG")
h, w = img.shape[:2]

# Generate new camera matrix from parameters
newcameramatrix, roi = cv2.getOptimalNewCameraMatrix(K, d, (w, h), 0)

# Generate look-up tables for remapping the camera image
mapx, mapy = cv2.initUndistortRectifyMap(K, d, None, newcameramatrix, (w, h),
                                         5)

# Remap the original image to a new image
newimg = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)

# Display old and new image
fig, (oldimg_ax, newimg_ax) = plt.subplots(1, 2)
oldimg_ax.imshow(img)
oldimg_ax.set_title('Original image')
newimg_ax.imshow(newimg)
newimg_ax.set_title('Unwarped image')
plt.show()