def get_video_rtsp(rtsp): ''' excample: >>> rtsp="rtsp://192.168.1.168:80/0" >>> get_vedeo_rtsp(rtsp) ''' import cv2 capture=cv2.videocapture(filename) while(1): ret,frame=capture.read() if frame is None: break cv2.imshow('img',frame) if cv2.waitKey(1) == 27: break capture.release() cv2.destroyAllWindows()
import cv2 import numpy as np faceDetect=cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cam=cv2.videocapture(0) id=raw_input('emter user id') sampleNum=0 while(True): ret,img=cam.read() gray=cv2.cvtcolor(img,cv2.COLOR_BGR2GRAY) faces=faceDetect.detectMultiScale(gray,1.3,5) for(x,y,w,h) in faces: sampleNum=sampleNum+1 cv2.imwrite("dataset/user."+str(id)+"."+str(sampleNum)+".jpg") cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2) cv2.waitKey(100) cv2.imshow("face",img) cv2.waitKey(10) if(sampleNum>60): break cam.release() cv2.destroyAllWindows()
import cv2 #calling classifirer casclf = cv2.CascadeClassifier('face.xml') #loading face data cap = cv2.videocapture(2) while cap.isOpened(): status, frame = cap.read() #applying classifier in live frame face = casclf.detectMultiscale(frame, 1.13, 5) #classifier turning paramete # print(face) for x, y, h, w in face: cv2.rectangle(frame, (x, y), (x + h, y + w), (0, 0, 255), 2) #onlyface #facedata=frame[x:x+h,y:y+w] #cv2.imshow('f',facedata) cv2.imshow('face', frame) if cv2.waitkey(10) & 0xff == ord('q'): break cv2.destroyAllWindows() cap.release()
# Put the coordinates of contour on the screen and have them move with the object cv2.putText(frame, "X: " + format(x), (int(x) - 60, int(y) + 50), font, 0.6, (155, 250, 55), 2, cv2.LINE_AA) cv2.putText(frame, "Y: " + format(y), (int(x) - 60, int(y) + 70), font, 0.6, (155, 255, 155), 2, cv2.LINE_AA) cv2.putText(frame, "W: " + format(w), (int(x) - 60, int(y) + 90), font, 0.6, (215, 250, 55), 2, cv2.LINE_AA) cv2.putText(frame, "H: " + format(h), (int(x) - 60, int(y) + 110), font, 0.6, (155, 250, 155), 2, cv2.LINE_AA) cX = cX + centerX cY = cY + centerY if len(contours) == 2: cX = cX / 2 cY = cY / 2 return len(contours), cX, cY if __name__ == 'main': cap = cv2.videocapture('../video/GOPRO281.mp4') frame, ret = cap tasks = Tasks(frame) data = tasks.findObject("qualGate")
#img, (x,y) , (width,height) (color in bgr) , border_thickness cv2.rectangle(img, (10, 10), (150, 150), (255, 0, 0), 4) #img ,text , (x,y), font face,scale(font size) , color in bgr,thickness cv2.putText(img, "Bahubali", (20, 20), font, 1, (255, 0, 0), 2) while True: cv2.imshow('image', img) #1 ms of delay for windows switching if cv2.waitKey(1) == 27: break cv2.destroyAllWindows() capture = cv2.videocapture(0) i = 0 while True: ret, img = capture.read() if ret: cv2.imshow('result', img) i += 1 cv2.imwrite('img_{}'.format(i), img) if cv2.waitkey(1) == 27: break else: print('Camera not Working') cv2.destroyAllWindows()
import cv2 cameracapture = cv2.videocapture(0) fps = 30 size = (int(cameracapture.get(CAP_PROP_FRAME_WIDTH)), int(cameracapture.get(CAP_PROP_FRAME_HEIGHT))) videowriter = cv2.videoWriter('MyOutputVid.avi', cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size) success, frame = cameracapture.read() frames_remaning = 10 * fps - 1 while success and frames_remaning > 0: videowriter.write(frame) success, frame = cameracapture.read() frames_remaning = frames_remaning - 1 cameracapture.release() # an appropriate timer for capturing the frames is the best way to proceed
#READING AND UNDERSTANDING QR CODE import cv2 from pyzbar.pyzbar import decode capture = cv2.videocapture(0) #DEFAULT CAMERA while True: _, instantpic = capture.read() decodeddata = decode(instantpic) NETDATA = decodeddata[0][0] #FOR ACCESING THE TEXT PART ONLY cv2.imshow("qr",instantpic) key = cv2.waitKey(5) if key == ord(POWER HANDLE): #FIRST RED SWITCH break #to read out text from _tkinter import * import pyttsx3 engine = pyttsx3.init() engine.say(NETDATA) engine.runAndWait() #FOR CAPTURING EMERGENCY PIC AND SAVING import time emergencypic = cv2.videocapture(0)
files = natural_sort(glob.glob(folder)) assert len(files) > 0, "Folder empty, make sure to provide a correct path" print(f'loading {len(files)} files') map_length = len(files[1:]) mapped = list( zip(files, files[1:], [row_stride] * map_length, [col_stride] * map_length)) with ThreadPool(processes=8) as p: result = list(tqdm(p.imap(threaded_flow, mapped), total=len(mapped))) return result if __name__ == '__main__': cap = cv.videocapture('video/train.mp4') ret, frame1 = cap.read() flows = [] while cap.isopened(): ret, frame2 = cap.read() if not ret: break flow = calc_flow(frame1, frame2) im = draw_flow(frame1, flow) avg_flow = calc_avg_flow(flow) im = draw_avg_flow(frame1, avg_flow) flows.append(avg_flow) cv.imshow('avg flow', im) cv.waitkey(30)