def ComputeHOG(self, trainData, testData): print( 'ComputeHog Function is called to calculate Histogram of Oriented Gradient' ) trainSize = trainData.shape[0] testSize = testData.shape[0] if self.imgNormalize is True: trainData = trainData * 255 testData = testData * 255 trainData = trainData.astype('uint8') testData = testData.astype('uint8') else: print('Images already Normalized') hog = HOGDescriptor(_winSize=(self.winsize, self.winsize), _blockSize=(self.blocksize, self.blocksize), _blockStride=(self.blockstride, self.blockstride), _cellSize=(self.cellsize, self.cellsize), _nbins=self.nbin) hogTrain = np.zeros((trainSize, hog.getDescriptorSize()), dtype="float32") for i in range(0, trainSize): trainImage = trainData[i].reshape(self.winsize, self.winsize) h = hog.compute(trainImage) hogTrain[i, :] = h[:, 0] hogTest = np.zeros((testSize, hog.getDescriptorSize()), dtype="float32") for i in range(0, testSize): testImage = testData[i].reshape(self.winsize, self.winsize) h = hog.compute(testImage) hogTest[i, :] = h[:, 0] print("Extracted HoG features (", h.size, " per image)") return hogTrain, hogTest
def get_hog_features(img, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True, fast=False): # Call with two outputs if vis==True if vis: features, hog_image = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=vis, feature_vector=feature_vec) return features, hog_image # Otherwise call with one output elif fast: w = img.shape[0] h = img.shape[1] cell_size = (pix_per_cell, pix_per_cell) block_size = (pix_per_cell * cell_per_block, pix_per_cell * cell_per_block) block_stride = (pix_per_cell, pix_per_cell) opencv_hog = HOGDescriptor((w, h), block_size, block_stride, cell_size, orient) features = opencv_hog.compute(img) if not feature_vec: new_shape = ((w - block_size[0]) // block_stride[0] + 1, (h - block_size[1]) // block_stride[1] + 1, cell_per_block, cell_per_block, orient) features = features.reshape(new_shape) return features else: features = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=vis, feature_vector=feature_vec) return features
def cmptFeatures(self, image): winSize = (16, 48) blockSize = (16, 16) blockStride = (8, 8) cellSize = (8, 8) nbins = 9 derivAperture = 1 winSigma = 4. histogramNormType = 0 L2HysThreshold = 2.0000000000000001e-01 gammaCorrection = 100 nlevels = 32 hog = HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins, derivAperture, winSigma, histogramNormType, L2HysThreshold, gammaCorrection, nlevels) winStride = (8, 8) padding = (16, 16) hist = hog.compute(image, winStride, padding) return np.reshape(hist, 4500)
#plt.title("Grayscale Histogram") #plt.xlabel("Bins") #plt.ylabel("# of Pixels") #plt.plot(hist) #plt.xlim([0, 256]) # -------------------------------- OpenCV: HoG -------------------------------- # Compute the histogram of oriented gradients # http://docs.opencv.org/modules/gpu/doc/object_detection.html hog = HOGDescriptor(_winSize=(w,w), _blockSize=(4,4), _blockStride=(2,2), _cellSize=(2,2), _nbins=9) hogTrain = np.zeros((trainSize, hog.getDescriptorSize()), dtype="float32") for i in xrange(0,trainSize): image = dataTrain[i].reshape(w,w) h = hog.compute(image) hogTrain[i,:] = h[:,0] hogTest = np.zeros((testSize, hog.getDescriptorSize()), dtype="float32") for i in xrange(0,testSize): image = dataTest[i].reshape(w,w) h = hog.compute(image) hogTest[i,:] = h[:,0] print "Extracted HoG features (", h.size, " per image)" # -------------------- Machine Learning: Feature Selection -------------------- selector = SelectKBest(chi2, k=500) XTrain = selector.fit_transform(hogTrain, yTrain) XTest = selector.transform(hogTest)