Exemple #1
0
 def __init__(self, n, seed, modelses, datagenhoc):
     self.n = n
     h.load_file(modelses)
     mrflist = h.List("MulRunFitter")
     mrf = mrflist.o(int(mrflist.count()) - 1)
     self.N = mrf.p.pf.generatorlist.o(0).gen.po
     h('objref nb')
     h.nb = mrf.p.pf.generatorlist.o(0).gen.po
     cvodewrap.fs.panel()
     self.trueParm = self.N.getParm()
     self.modelses = modelses
     self.seed = seed
     if n == 0:
         G = noisegen.Gen(self.N)
         G.reseed(seed)
         self.seed = seed
         self.Data = G.datasim()
     else:
         h.load_file(datagenhoc)
         tvec = h.Vector(self.N.Eve.collectionTimes)
         vec = h.ch3ssdata(n, seed, tvec, self.trueParm,
                           self.N.rf.fitnesslist.o(0))
         self.Data = []
         for i in range(len(vec)):
             self.Data.append(numpy.matrix(vec[i]))
     if fitglobals.verbose: h.topology()
     ss = h.Vector()
     cvodewrap.states(ss)
     if fitglobals.verbose: ss.printf()
     self.N.overwrite(self.Data)
     self.H = numpy.matrix(self.Hessian())
Exemple #2
0
 def paramPanel(self):
     self.box = h.VBox()
     self.box.intercept(1)
     h.xpanel('')
     h.xlabel('Likelihood numerical parameters')
     h.xlabel('    Measurement noise')
     c = self.Eve.Obs.C
     for o in c:
         h.xvalue('sigma: ' + o.hpt.s(), (o, 'sigma'), 1)
     h.xlabel('    Process noise')
     h.xvalue('Injection interval', (self, 'inj_invl'), 1,
              self.inj_invl_changed)
     s = h.Vector()
     cvodewrap.states(s)
     sref = h.ref('')
     for i in range(len(s)):
         cvodewrap.statename(i, sref, 1)
         h.xvalue('Diffusion Coeff[%d,%d]: ' % (i, i) + sref[0],
                  (self.processNoise[i], 'x'), 1, (self.fillPB, i))
     h.xcheckbox('Fox & Lu Diffusion (for Hodgkin-Huxley)?', (self, 'hhB'),
                 self.hhBButton)
     h.xvalue('  Fox & Lu: Number Na Channels', (self, 'nNa'), 1,
              self.hhBButton)
     h.xvalue('  Fox & Lu: Number K Channels', (self, 'nK'), 1,
              self.hhBButton)
     h.xlabel('    Initial Uncertainty')
     for i in range(len(s)):
         print i
         cvodewrap.statename(i, sref, 1)
         h.xvalue('Initial Stand Dev[%d]: ' % i + sref[0],
                  (self.Sdiag[i], 'x'), 1, (self.fillS, i))
     h.xbutton('Show state funnels', self.show_state_funnels)
     h.xpanel()
     self.box.intercept(0)
     self.box.map('Likelihood parameters')
Exemple #3
0
def measJac():
    x = h.Vector()
    cvodewrap.states(x)
    return [
        numpy.matrix(x.x[0]),
        numpy.matrix([1, 0, 0, 0]),
        numpy.matrix(sigm)
    ]
Exemple #4
0
 def flow(self, x0, t1, x1):
     self.ss.restore(1)
     cvodewrap.yscatter(x0)
     cvodewrap.re_init()
     h.initPlot()
     h.continuerun(t1)  # or cvodewrap.solve(t1)
     cvodewrap.states(x1)
     return x1
Exemple #5
0
 def inc_nsums(self):
     self.nsums += 1
     s = h.Vector()
     cvodewrap.states(s)
     nstates = len(s)
     new = []
     for i in range(nstates):
         new.append(xstruct())
     self.sumto1.append(new)
     print 'nsums', self.nsums
     print 'sumto1', self.sumto1
Exemple #6
0
    def mean(self, time, state):  # the observable (under zero noise, ie mean)
        ss = h.Vector()  #save
        cvodewrap.states(ss)

        ds = h.Vector()
        cvodewrap.f(time, h.Vector(state), ds)
        #measurement goes here
        x = self.hpt.val

        # print 'ss[3]', ss[3]
        # print 'x', x

        cvodewrap.yscatter(ss)  #restore
        return x
Exemple #7
0
 def noiseJac(self, injectionTimes):
     inject0 = injectionTimes[0]
     tFinal = injectionTimes[-1]
     if self.hhB:
         cvodewrap.states(self.states)
         h.rates_hh(self.states[0])
         alpha_m = h.mtau_hh * h.minf_hh
         beta_m = h.mtau_hh * (1.0 - h.minf_hh)
         alpha_h = h.htau_hh * h.hinf_hh
         beta_h = h.htau_hh * (1.0 - h.hinf_hh)
         alpha_n = h.ntau_hh * h.ninf_hh
         beta_n = h.ntau_hh * (1.0 - h.ninf_hh)
         state_m = copy.deepcopy(self.states[1])
         state_h = copy.deepcopy(self.states[2])
         state_n = copy.deepcopy(self.states[3])
         #if state_m < 0.0:
         #   state_m = 0.0
         #if state_h < 0.0:
         #   state_h = 0.0
         #if state_n < 0.0:
         #    state_n = 0.0
         #if state_m > 1.0:
         #    state_m = 1.0
         #if state_h > 1.0:
         #    state_h = 1.0
         #if state_n > 1.0:
         #    state_n = 1.0
         print 'alpha_h', alpha_h, 'beta_h', beta_h, 'state_h', state_h, 'nNa', self.nNa
         self.B[0, 0] = 0.0
         self.B[1, 1] = math.sqrt(
             (alpha_m * (1.0 - state_m) + beta_m * state_m) / self.nNa)
         print 'Inside Sqrt', ((alpha_h *
                                (1.0 - state_h) + beta_h * state_h) /
                               self.nNa)
         self.B[2, 2] = math.sqrt(
             (alpha_h * (1.0 - state_h) + beta_h * state_h) / self.nNa)
         self.B[3, 3] = math.sqrt(
             (alpha_n * (1.0 - state_n) + beta_n * state_n) / self.nK)
         return self.scale * self.B * math.sqrt(tFinal - inject0)
     else:
         assert (tFinal - inject0 >= 0.0)
         assert (not numpy.isnan(self.scale))
         R = self.scale * self.B * math.sqrt(tFinal - inject0)
         assert (not numpy.isnan(R).any())
         return R
Exemple #8
0
 def sim(self):
     tMax = self.gettMax()
     tData = 0
     tNoise = 0
     h.stdinit()
     x = h.Vector()
     Data = []
     while tData < tMax:
         noiseTimes = [] 
         tData += self.Mdt
         if tData > tMax:
             tData = tMax
         while tNoise < min(tMax,tData):
             tNoise += self.Ndt
             noiseTimes.append(tNoise)
             if tNoise > tMax:
                 tNoise = tMax
             h.continuerun(tNoise)
             cvodewrap.states(x)
             x.x[0] += self.sp*(self.evalW(tNoise) - self.evalW(tNoise-self.Ndt))
             cvodewrap.yscatter(x)
             cvodewrap.re_init()
         Data.append([noiseTimes, x.x[0] + self.sm*self.evalM(tData)])
     return Data 
Exemple #9
0
 def constraintsPanel(self):
     self.box = h.HBox()
     self.box.intercept(1)
     self.box.ref(self)
     s = h.Vector()
     cvodewrap.states(s)
     nstates = len(s)
     sref = h.ref('')
     h.xpanel("")
     h.xlabel('0<=')
     for i in range(nstates):
         h.xcheckbox('', (self.geq0[i], 'x'), self.constraintsButton)
     h.xpanel()
     h.xpanel("")
     h.xlabel('>=1')
     for i in range(nstates):
         cvodewrap.statename(i, sref, 1)
         h.xcheckbox(sref[0], (self.leq1[i], 'x'), self.constraintsButton)
     h.xpanel()
     for j in range(self.nsums):
         h.xpanel("")
         h.xlabel("S%d" % j)
         for i in range(nstates):
             h.xcheckbox('', (self.sumto1[j][i], 'x'),
                         self.constraintsButton)
         h.xpanel()
     h.xpanel("")
     h.xbutton("Add Sum-to-1", self.constraintsButton)
     h.xbutton("Remove Empty", self.constraintsButton)
     h.xbutton("Close", self.constraintsButton)
     h.xlabel('QP Solver:')
     h.xstatebutton('cvxopt', (self, 'cvxopt_sel'), self.constraintsButton)
     h.xstatebutton('custom', (self, 'custom_sel'), self.constraintsButton)
     h.xpanel()
     self.box.intercept(0)
     self.box.map("Constraints")
Exemple #10
0
def printSomeInfo():
    if fitglobals.verbose: h.topology()
    ss = h.Vector()
    cvodewrap.states(ss)
    if fitglobals.verbose: ss.printf()
Exemple #11
0
def flowJac(noiseTimes):

    cvodewrap.states(x)
    t0 = h.t
    print 't0'
    print t0
    ss = [None] * (len(noiseTimes) + 1)
    k = 0
    ss[0] = h.SaveState()
    ss[0].save()
    cvodewrap.re_init()
    while k < len(noiseTimes):
        print noiseTimes[k]
        h.continuerun(noiseTimes[k])
        ss[k + 1] = h.SaveState()
        ss[k + 1].save()
        cvodewrap.re_init()
        k += 1
    cvodewrap.states(value)

    # Derivative with respect to state
    DFx = pylab.zeros((len(value), len(x)))
    k = 0
    while k < len(x):
        ss[0].restore(1)
        cvodewrap.re_init()
        cvodewrap.states(x)
        temp = x[k]
        if abs(temp) > 1:
            dx = sqrtEps * abs(temp)
        else:
            dx = sqrtEps
        x.x[k] = temp + dx
        cvodewrap.yscatter(x)
        cvodewrap.re_init()
        dx = x[k] - temp  # trick to reduce finite precision error
        h.continuerun(noiseTimes[len(noiseTimes) - 1])
        cvodewrap.states(df)
        df.sub(value)
        df.div(dx)
        DFx[:, k] = numpy.array(df)
        k += 1

    # Derivative with respect to noise
    DFn = pylab.zeros((len(value), len(noiseTimes)))
    noiseTimes.insert(0, t0)
    k = 0
    while k < len(noiseTimes) - 1:
        ss[k + 1].restore(1)
        cvodewrap.re_init()
        if k < len(noiseTimes) - 2:
            dx = sqrtEps
            cvodewrap.states(x)
            x.x[0] += sigp * math.sqrt(noiseTimes[k + 1] - noiseTimes[k]) * dx
            cvodewrap.yscatter(x)
            cvodewrap.re_init()
            h.continuerun(noiseTimes[len(noiseTimes) - 1])
            cvodewrap.states(df)
            df.sub(value)
            df.div(dx)
            DFn[:, k] = numpy.array(df)
        else:
            DFn[:, k] = numpy.array(
                [sigp * math.sqrt(noiseTimes[k + 1] - noiseTimes[k]), 0, 0, 0])
        k += 1

    return [numpy.matrix(value).T, numpy.matrix(DFx), numpy.matrix(DFn)]
Exemple #12
0
class Flow(object):
    def __init__(self):
        self.ss = h.SaveState()
        self.ss.save()
        self.t0 = h.t

    def flow(self, x0, t1, x1):
        self.ss.restore(1)
        cvodewrap.yscatter(x0)
        cvodewrap.re_init()
        h.initPlot()
        h.continuerun(t1)  # or cvodewrap.solve(t1)
        cvodewrap.states(x1)
        return x1


if __name__ == '__main__':
    h.load_file('hh.ses')
    h.Graph[0].exec_menu('Keep Lines')
    h.stdinit()
    h.continuerun(1.5)
    flow = Flow()
    x = h.Vector()
    x1 = h.Vector()
    cvodewrap.states(x)
    for i in range(5):
        print i, x
        x.x[0] += 5
        flow.flow(x, h.tstop, x1)
Exemple #13
0
 def __init__(self, ho):
     #h.mulfit_after_quad_pycallback = self.after_quad
     pc = h.ParallelContext()
     nhost = int(pc.nhost_bbs())
     if nhost > 1:
         fitglobals.verbose = 0
     self.xlvec = h.Vector()
     self.ylvec = h.Vector()
     self.g = None
     self.rf = ho
     ol = []
     vl = self.rf.yvarlist
     fl = self.rf.fitnesslist
     tlast = 0
     self.n_chdat = 0
     for i in range(len(vl)):
         self.n_chdat += fl.o(i).n_chdat
         tl = list(fl.o(i).xdat_)
         o = obs.NeuronObservable(vl.o(i), tl)
         o.sigma = 0.01
         ol.append(o)
         if (tlast < tl[-1]):
             tlast = tl[-1]
     s = h.Vector()
     cvodewrap.active(1)
     cvodewrap.states(s)
     assert (len(s) > 0)
     assert (len(vl) > 0)
     self.covGrowthTime = 100
     self.varTerm = 1
     self.processNoise = []
     self.Sdiag = []
     Sto = sto.StochasticModel(len(s), tlast)
     for i in range(len(s)):
         self.Sdiag.append(WrappedVal(Sto.InitialCovSqrt[i, i]))
     for i in range(len(s)):
         self.processNoise.append(WrappedVal(Sto.B[i, i]))
     Obs = obs.ObservationModel(ol)
     self.Eve = eve.EventTable(Sto, Obs)
     self.hhB = self.Eve.Sto.hhB
     self.nNa = self.Eve.Sto.nNa
     self.nK = self.Eve.Sto.nK
     self.Sys = detsys.NeuronModel()
     self.inj_invl = 1.0
     self.Eve.newInjectionInterval(self.inj_invl)
     # self.inj_invl_changed(Sys, P.tstop)
     # self.M = models.Model(Sys, Obs, P)
     self.Data = self.__data(fl, self.Eve)
     self.pf = self.getParmFitness()
     self.pf.verbose = fitglobals.verbose
     self.dlikedt = h.Vector()
     self.likefailed = False
     #CONSTRAINTS GUI INIT
     s = h.Vector()
     cvodewrap.states(s)
     nstates = len(s)
     self.geq0 = []
     self.leq1 = []
     self.sumto1 = []
     self.cvxopt_sel = True
     self.custom_sel = True
     self.nsums = 2
     for j in range(self.nsums):
         self.sumto1.append([])
     for i in range(nstates):
         self.geq0.append(xstruct())
         self.leq1.append(xstruct())
         for j in range(self.nsums):
             self.sumto1[j].append(xstruct())
     EKF.constraintsOn(self.geq0, self.leq1, self.sumto1)