Exemple #1
0
    def __init__(self,
                 dataset_name,
                 meta,
                 cfg,
                 distributed,
                 output_dir=None,
                 dump=False):
        """
        Args:
            dataset_name (str): name of the dataset to be evaluated.
                It must have either the following corresponding metadata:

                    "json_file": the path to the COCO format annotation

                Or it must be in cvpods's standard dataset format
                so it can be converted to COCO format automatically.
            meta (SimpleNamespace): dataset metadata.
            cfg (config dict): cvpods Config instance.
            distributed (True): if True, will collect results from all ranks for evaluation.
                Otherwise, will evaluate the results in the current process.
            output_dir (str): optional, an output directory to dump all
                results predicted on the dataset. The dump contains two files:

                1. "instance_predictions.pth" a file in torch serialization
                   format that contains all the raw original predictions.
                2. "coco_instances_results.json" a json file in COCO's result
                   format.

            dump (bool): If True, after the evaluation is completed, a Markdown file
                that records the model evaluation metrics and corresponding scores
                will be generated in the working directory.
        """
        self._dump = dump
        self.cfg = cfg
        self._tasks = self._tasks_from_config(cfg)
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self._metadata = meta
        if not hasattr(self._metadata, "json_file"):
            self._logger.warning(
                f"json_file was not found in MetaDataCatalog for '{dataset_name}'."
                " Trying to convert it to COCO format ...")

            cache_path = os.path.join(output_dir,
                                      f"{dataset_name}_coco_format.json")
            self._metadata.json_file = cache_path
            convert_to_coco_json(dataset_name, cache_path)

        json_file = PathManager.get_local_path(self._metadata.json_file)
        with contextlib.redirect_stdout(io.StringIO()):
            self._coco_api = COCO(json_file)

        self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS
        # Test set json files do not contain annotations (evaluation must be
        # performed using the COCO evaluation server).
        self._do_evaluation = "annotations" in self._coco_api.dataset
Exemple #2
0
    def __init__(self,
                 dataset_name,
                 meta,
                 cfg,
                 distributed,
                 output_dir=None,
                 dump=False):
        """
        Args:
            dataset_name (str): name of the dataset to be evaluated.
                It must have either the following corresponding metadata:

                    "json_file": the path to the COCO format annotation

                Or it must be in cvpods's standard dataset format
                so it can be converted to COCO format automatically.
            cfg (CfgNode): cvpods Config instance.
            distributed (True): if True, will collect results from all ranks for evaluation.
                Otherwise, will evaluate the results in the current process.
            output_dir (str): optional, an output directory to dump results.
            dump (bool): If True, after the evaluation is completed, a Markdown file
                that records the model evaluation metrics and corresponding scores
                will be generated in the working directory.
        """
        self._dump = dump
        self._tasks = self._tasks_from_config(cfg)
        self._distributed = distributed
        self._output_dir = output_dir
        self._cpu_device = torch.device("cpu")

        self._metadata = meta
        if not hasattr(self._metadata, "json_file"):
            logger.warning(
                f"json_file was not found in MetaDataCatalog for '{dataset_name}'"
            )

            cache_path = convert_to_coco_json(dataset_name, output_dir)
            self._metadata.json_file = cache_path

        # json_file = PathManager.get_local_path(self._metadata.json_file)
        with contextlib.redirect_stdout(io.StringIO()):
            self._coco_api = COCO(self._metadata.json_file)

        self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS
        # Test set json files do not contain annotations (evaluation must be
        # performed using the COCO evaluation server).
        self._do_evaluation = "annotations" in self._coco_api.dataset
    def __init__(self,
                 dataset_name,
                 meta,
                 cfg,
                 distributed,
                 output_dir=None,
                 dump=False):
        """
        Args:
            dataset_name (str): name of the dataset to be evaluated.
                It must have either the following corresponding metadata:


                    "json_file": the path to the COCO format annotation
                Or it must be in cvpods's standard dataset format
                so it can be converted to COCO format automatically.
            cfg (CfgNode): config instance
            distributed (True): if True, will collect results from all ranks for evaluation.
                Otherwise, will evaluate the results in the current process.
            output_dir (str): optional, an output directory to dump results.
        """
        self._dump = dump
        self._tasks = self._tasks_from_config(cfg)
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self._metadata = meta
        if not hasattr(self._metadata, "json_file"):
            self._logger.warning(
                f"json_file was not found in MetaDataCatalog for '{dataset_name}'"
            )

            cache_path = convert_to_coco_json(dataset_name, output_dir)
            self._metadata.json_file = cache_path

        self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS