Exemple #1
0
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the cvpods logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (BaseConfig): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    # setup_logger(output_dir, distributed_rank=rank, name="cvpods")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(
        rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info("Contents of args.config_file={}:\n{}".format(
            args.config_file,
            PathManager.open(args.config_file, "r").read()))

    adjust_config(cfg)
    logger.info("Running with full config:\n{}".format(cfg))
    base_config = cfg.__class__.__base__()
    logger.info("different config with base class:\n{}".format(
        cfg.diff(base_config)))
    # if comm.is_main_process() and output_dir:
    #     # Note: some of our scripts may expect the existence of
    #     # config.yaml in output directory
    #     path = os.path.join(output_dir, "config.yaml")
    #     with PathManager.open(path, "w") as f:
    #         f.write(cfg.dump())
    #     logger.info("Full config saved to {}".format(os.path.abspath(path)))

    # make sure each worker has a different, yet deterministic seed if specified

    seed = seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)
    # save seed to config for dump
    cfg.SEED = seed

    # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
    # typical validation set.
    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK

    return cfg, logger
Exemple #2
0
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the cvpods logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (BaseConfig): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        ensure_dir(output_dir)

    rank = comm.get_rank()
    # setup_logger(output_dir, distributed_rank=rank, name="cvpods")
    setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(
        rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info("Contents of args.config_file={}:\n{}".format(
            args.config_file,
            megfile.smart_open(args.config_file, "r").read()))

    adjust_config(cfg)

    # make sure each worker has a different, yet deterministic seed if specified
    seed = seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)
    # save seed to config for dump
    cfg.SEED = seed

    # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
    # typical validation set.
    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK

    return cfg
Exemple #3
0
def worker_init_reset_seed(worker_id):
    seed_all_rng(np.random.randint(2**31) + worker_id)
Exemple #4
0
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the cvpods logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (BaseConfig): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    # setup_logger(output_dir, distributed_rank=rank, name="cvpods")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(
        rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info("Contents of args.config_file={}:\n{}".format(
            args.config_file,
            PathManager.open(args.config_file, "r").read()))

    logger.info("Running with full config:\n{}".format(cfg))
    base_config = cfg.__class__.__base__()
    logger.info("different config with base class:\n{}".format(
        cfg.show_diff(base_config)))
    # if comm.is_main_process() and output_dir:
    #     # Note: some of our scripts may expect the existence of
    #     # config.yaml in output directory
    #     path = os.path.join(output_dir, "config.yaml")
    #     with PathManager.open(path, "w") as f:
    #         f.write(cfg.dump())
    #     logger.info("Full config saved to {}".format(os.path.abspath(path)))

    # make sure each worker has a different, yet deterministic seed if specified
    seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)

    # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
    # typical validation set.
    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK

    # dynamic adjust batch_size, steps according to world size
    base_world_size = int(cfg.SOLVER.IMS_PER_BATCH / cfg.SOLVER.IMS_PER_DEVICE)
    world_size = comm.get_world_size()
    ratio = world_size / base_world_size

    cfg.SOLVER.IMS_PER_BATCH = int(ratio * cfg.SOLVER.IMS_PER_BATCH)
    cfg.SOLVER.LR_SCHEDULER.MAX_ITER = int(cfg.SOLVER.LR_SCHEDULER.MAX_ITER /
                                           ratio)

    # Divided by scale ratio when using iterations rather than epochs
    if cfg.SOLVER.LR_SCHEDULER.MAX_EPOCH is None:
        cfg.SOLVER.LR_SCHEDULER.STEPS = list(
            (int(step / ratio) for step in cfg.SOLVER.LR_SCHEDULER.STEPS))
        cfg.SOLVER.CHECKPOINT_PERIOD = int(cfg.SOLVER.CHECKPOINT_PERIOD /
                                           ratio)
        cfg.TEST.EVAL_PERIOD = int(cfg.TEST.EVAL_PERIOD / ratio)

    cfg.SOLVER.OPTIMIZER.BASE_LR = ratio * cfg.SOLVER.OPTIMIZER.BASE_LR

    assert cfg.SOLVER.IMS_PER_BATCH / cfg.SOLVER.IMS_PER_DEVICE == world_size

    return cfg, logger