def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the cvpods logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (BaseConfig): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = cfg.OUTPUT_DIR if comm.is_main_process() and output_dir: PathManager.mkdirs(output_dir) rank = comm.get_rank() # setup_logger(output_dir, distributed_rank=rank, name="cvpods") logger = setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format( rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info("Contents of args.config_file={}:\n{}".format( args.config_file, PathManager.open(args.config_file, "r").read())) adjust_config(cfg) logger.info("Running with full config:\n{}".format(cfg)) base_config = cfg.__class__.__base__() logger.info("different config with base class:\n{}".format( cfg.diff(base_config))) # if comm.is_main_process() and output_dir: # # Note: some of our scripts may expect the existence of # # config.yaml in output directory # path = os.path.join(output_dir, "config.yaml") # with PathManager.open(path, "w") as f: # f.write(cfg.dump()) # logger.info("Full config saved to {}".format(os.path.abspath(path))) # make sure each worker has a different, yet deterministic seed if specified seed = seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank) # save seed to config for dump cfg.SEED = seed # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK return cfg, logger
def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the cvpods logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (BaseConfig): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = cfg.OUTPUT_DIR if comm.is_main_process() and output_dir: ensure_dir(output_dir) rank = comm.get_rank() # setup_logger(output_dir, distributed_rank=rank, name="cvpods") setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format( rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info("Contents of args.config_file={}:\n{}".format( args.config_file, megfile.smart_open(args.config_file, "r").read())) adjust_config(cfg) # make sure each worker has a different, yet deterministic seed if specified seed = seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank) # save seed to config for dump cfg.SEED = seed # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK return cfg
def worker_init_reset_seed(worker_id): seed_all_rng(np.random.randint(2**31) + worker_id)
def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the cvpods logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (BaseConfig): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = cfg.OUTPUT_DIR if comm.is_main_process() and output_dir: PathManager.mkdirs(output_dir) rank = comm.get_rank() # setup_logger(output_dir, distributed_rank=rank, name="cvpods") logger = setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format( rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info("Contents of args.config_file={}:\n{}".format( args.config_file, PathManager.open(args.config_file, "r").read())) logger.info("Running with full config:\n{}".format(cfg)) base_config = cfg.__class__.__base__() logger.info("different config with base class:\n{}".format( cfg.show_diff(base_config))) # if comm.is_main_process() and output_dir: # # Note: some of our scripts may expect the existence of # # config.yaml in output directory # path = os.path.join(output_dir, "config.yaml") # with PathManager.open(path, "w") as f: # f.write(cfg.dump()) # logger.info("Full config saved to {}".format(os.path.abspath(path))) # make sure each worker has a different, yet deterministic seed if specified seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank) # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK # dynamic adjust batch_size, steps according to world size base_world_size = int(cfg.SOLVER.IMS_PER_BATCH / cfg.SOLVER.IMS_PER_DEVICE) world_size = comm.get_world_size() ratio = world_size / base_world_size cfg.SOLVER.IMS_PER_BATCH = int(ratio * cfg.SOLVER.IMS_PER_BATCH) cfg.SOLVER.LR_SCHEDULER.MAX_ITER = int(cfg.SOLVER.LR_SCHEDULER.MAX_ITER / ratio) # Divided by scale ratio when using iterations rather than epochs if cfg.SOLVER.LR_SCHEDULER.MAX_EPOCH is None: cfg.SOLVER.LR_SCHEDULER.STEPS = list( (int(step / ratio) for step in cfg.SOLVER.LR_SCHEDULER.STEPS)) cfg.SOLVER.CHECKPOINT_PERIOD = int(cfg.SOLVER.CHECKPOINT_PERIOD / ratio) cfg.TEST.EVAL_PERIOD = int(cfg.TEST.EVAL_PERIOD / ratio) cfg.SOLVER.OPTIMIZER.BASE_LR = ratio * cfg.SOLVER.OPTIMIZER.BASE_LR assert cfg.SOLVER.IMS_PER_BATCH / cfg.SOLVER.IMS_PER_DEVICE == world_size return cfg, logger