Exemple #1
0
    def factor(W, H = None, Df = None):

        blas.scal(0.0, K)
        if H is not None: K[:n, :n] = H
        K[n:n+p, :n] = A
        for k in range(n):
            if mnl: g[:mnl] = Df[:,k]
            g[mnl:] = G[:,k]
            scale(g, W, trans = 'T', inverse = 'I')
            pack(g, K, dims, mnl, offsety = k*ldK + n + p)
        K[(ldK+1)*(p+n) :: ldK+1]  = -1.0
        # Add positive regularization in 1x1 block and negative in 2x2 block.
        blas.copy(K, Ktilde)
        Ktilde[0 : (ldK+1)*n : ldK+1]  += EPSILON
        Ktilde[(ldK+1)*n :: ldK+1]  += -EPSILON
        lapack.sytrf(Ktilde, ipiv)

        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.scal(0.0, sltn)
            blas.copy(x, u)
            blas.copy(y, u, offsety = n)
            scale(z, W, trans = 'T', inverse = 'I') 
            pack(z, u, dims, mnl, offsety = n + p)
            blas.copy(u, r)
            # Iterative refinement algorithm:
            # Init: sltn = 0, r_0 = [bx; by; W^{-T}*bz]
            # 1. u_k = Ktilde^-1 * r_k
            # 2. sltn += u_k
            # 3. r_k+1 = r - K*sltn
            # Repeat until exceed MAX_ITER iterations or ||r|| <= ERROR_BOUND
            iteration = 0
            resid_norm = 1
            while iteration <= MAX_ITER and resid_norm > ERROR_BOUND:
                lapack.sytrs(Ktilde, ipiv, u)
                blas.axpy(u, sltn, alpha = 1.0)
                blas.copy(r, u)
                blas.symv(K, sltn, u, alpha = -1.0, beta = 1.0)
                resid_norm = math.sqrt(blas.dot(u, u))
                iteration += 1
            blas.copy(sltn, x, n = n)
            blas.copy(sltn, y, offsetx = n, n = p)
            unpack(sltn, z, dims, mnl, offsetx = n + p)
        return solve
Exemple #2
0
        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.copy(x, u)
            blas.copy(y, u, offsety=n)
            scale(z, W, trans='T', inverse='I')
            pack(z, u, dims, mnl, offsety=n + p)
            lapack.sytrs(K, ipiv, u)
            blas.copy(u, x, n=n)
            blas.copy(u, y, offsetx=n, n=p)
            unpack(u, z, dims, mnl, offsetx=n + p)
Exemple #3
0
        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.copy(x, u)
            blas.copy(y, u, offsety=n)
            scale(z, W, trans='T', inverse='I')
            pack(z, u, dims, mnl, offsety=n + p)
            lapack.sytrs(K, ipiv, u)
            blas.copy(u, x, n=n)
            blas.copy(u, y, offsetx=n, n=p)
            unpack(u, z, dims, mnl, offsetx=n + p)
Exemple #4
0
    def factor(W, H=None, Df=None):
        blas.scal(0.0, K)
        if H is not None:
            K[:n, :n] = H
        K[n:n+p, :n] = A
        for k in range(n):
            if mnl:
                g[:mnl] = Df[:, k]
            g[mnl:] = G[:, k]
            scale(g, W, trans='T', inverse='I')
            pack(g, K, dims, mnl, offsety=k*ldK + n + p)
        K[(ldK+1)*(p+n):: ldK+1] = -1.0
        # Add positive regularization in 1x1 block and negative in 2x2 block.
        K[0: (ldK+1)*n: ldK+1] += REG_EPS
        K[(ldK+1)*n:: ldK+1] += -REG_EPS
        lapack.sytrf(K, ipiv)

        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.copy(x, u)
            blas.copy(y, u, offsety=n)
            scale(z, W, trans='T', inverse='I')
            pack(z, u, dims, mnl, offsety=n + p)
            lapack.sytrs(K, ipiv, u)
            blas.copy(u, x, n=n)
            blas.copy(u, y, offsetx=n, n=p)
            unpack(u, z, dims, mnl, offsetx=n + p)

        return solve
Exemple #5
0
    def factor(W, H=None, Df=None):
        blas.scal(0.0, K)
        if H is not None:
            K[:n, :n] = H
        K[n:n+p, :n] = A
        for k in range(n):
            if mnl:
                g[:mnl] = Df[:, k]
            g[mnl:] = G[:, k]
            scale(g, W, trans='T', inverse='I')
            pack(g, K, dims, mnl, offsety=k*ldK + n + p)
        K[(ldK+1)*(p+n):: ldK+1] = -1.0
        # Add positive regularization in 1x1 block and negative in 2x2 block.
        K[0: (ldK+1)*n: ldK+1] += REG_EPS
        K[(ldK+1)*n:: ldK+1] += -REG_EPS
        lapack.sytrf(K, ipiv)

        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.copy(x, u)
            blas.copy(y, u, offsety=n)
            scale(z, W, trans='T', inverse='I')
            pack(z, u, dims, mnl, offsety=n + p)
            lapack.sytrs(K, ipiv, u)
            blas.copy(u, x, n=n)
            blas.copy(u, y, offsetx=n, n=p)
            unpack(u, z, dims, mnl, offsetx=n + p)

        return solve
Exemple #6
0
        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.scal(0.0, sltn)
            blas.copy(x, u)
            blas.copy(y, u, offsety = n)
            scale(z, W, trans = 'T', inverse = 'I') 
            pack(z, u, dims, mnl, offsety = n + p)
            blas.copy(u, r)
            # Iterative refinement algorithm:
            # Init: sltn = 0, r_0 = [bx; by; W^{-T}*bz]
            # 1. u_k = Ktilde^-1 * r_k
            # 2. sltn += u_k
            # 3. r_k+1 = r - K*sltn
            # Repeat until exceed MAX_ITER iterations or ||r|| <= ERROR_BOUND
            iteration = 0
            resid_norm = 1
            while iteration <= MAX_ITER and resid_norm > ERROR_BOUND:
                lapack.sytrs(Ktilde, ipiv, u)
                blas.axpy(u, sltn, alpha = 1.0)
                blas.copy(r, u)
                blas.symv(K, sltn, u, alpha = -1.0, beta = 1.0)
                resid_norm = math.sqrt(blas.dot(u, u))
                iteration += 1
            blas.copy(sltn, x, n = n)
            blas.copy(sltn, y, offsetx = n, n = p)
            unpack(sltn, z, dims, mnl, offsetx = n + p)
Exemple #7
0
        def solve(x, y, z):
            """
            Returns solution of 

                rho * ux + A'(uy) - r^-T * uz * r^-1 = bx
                A(ux)                                = by
                -ux               - r * uz * r'      = bz.

            On entry, x = bx, y = by, z = bz.
            On exit, x = ux, y = uy, z = uz.
            """

            # bz is a copy of z in the format of x
            blas.copy(z, bz)
            blas.axpy(bz, x, alpha=rho)

            # x := Gamma .* (u' * x * u)
            #    = Gamma .* (u' * (bx + rho * bz) * u)

            cngrnc(U, x, trans='T', offsetx=0)
            blas.tbmv(Gamma, x, n=ns2, k=0, ldA=1, offsetx=0)

            # y := y - As(x)
            #   := by - As( Gamma .* u' * (bx + rho * bz) * u)
            #blas.copy(x,xp)
            #pack_ip(xp,n = ns,m=1,nl=nl)
            misc.pack(x, xp, {'l': 0, 'q': [], 's': [ns]})

            blas.gemv(Aspkd, xp, y, trans = 'T',alpha = -1.0, beta = 1.0, \
                m = ns*(ns+1)/2, n = ms,offsetx = 0)

            # y := -y - A(bz)
            #    = -by - A(bz) + As(Gamma .*  (u' * (bx + rho * bz) * u)
            Af(bz, y, alpha=-1.0, beta=-1.0)

            # y := H^-1 * y
            #    = H^-1 ( -by - A(bz) + As(Gamma.* u'*(bx + rho*bz)*u) )
            #    = uy

            blas.trsv(H, y)
            blas.trsv(H, y, trans='T')

            # bz = Vt' * vz * Vt
            #    = uz where
            # vz := Gamma .* ( As'(uy)  - x )
            #     = Gamma .* ( As'(uy)  - Gamma .* (u'*(bx + rho *bz)*u) )
            #     = Gamma.^2 .* ( u' * (A'(uy) - bx - rho * bz) * u ).
            #blas.copy(x,xp)
            #pack_ip(xp,n=ns,m=1,nl=nl)

            misc.pack(x, xp, {'l': 0, 'q': [], 's': [ns]})
            blas.scal(-1.0, xp)

            blas.gemv(Aspkd,
                      y,
                      xp,
                      alpha=1.0,
                      beta=1.0,
                      m=ns * (ns + 1) / 2,
                      n=ms,
                      offsety=0)

            # bz[j] is xp unpacked and multiplied with Gamma
            misc.unpack(xp, bz, {'l': 0, 'q': [], 's': [ns]})
            blas.tbmv(Gamma, bz, n=ns2, k=0, ldA=1, offsetx=0)

            # bz = Vt' * bz * Vt
            #    = uz
            cngrnc(Vt, bz, trans='T', offsetx=0)

            symmetrize(bz, ns, offset=0)

            # x = -bz - r * uz * r'
            # z contains r.h.s. bz;  copy to x
            blas.copy(z, x)
            blas.copy(bz, z)

            cngrnc(W['r'][0], bz, offsetx=0)
            blas.axpy(bz, x)
            blas.scal(-1.0, x)
Exemple #8
0
    def F(W):
        # SVD R[j] = U[j] * diag(sig[j]) * Vt[j]
        lapack.gesvd(+W['r'][0], sv, jobu='A', jobvt='A', U=U, Vt=Vt)

        # Vt[j] := diag(sig[j])^-1 * Vt[j]
        for k in xrange(ns):
            blas.tbsv(sv, Vt, n=ns, k=0, ldA=1, offsetx=k * ns)

        # Gamma[j] is an ns[j] x ns[j] symmetric matrix
        #
        #  (sig[j] * sig[j]') ./  sqrt(1 + rho * (sig[j] * sig[j]').^2)

        # S = sig[j] * sig[j]'
        S = matrix(0.0, (ns, ns))
        blas.syrk(sv, S)
        Gamma = div(S, sqrt(1.0 + rho * S**2))
        symmetrize(Gamma, ns)

        # As represents the scaled mapping
        #
        #     As(x) = A(u * (Gamma .* x) * u')
        #    As'(y) = Gamma .* (u' * A'(y) * u)
        #
        # stored in a similar format as A, except that we use packed
        # storage for the columns of As[i][j].

        if type(A) is spmatrix:
            blas.scal(0.0, As)
            try:
                As[VecAIndex] = +A['s'][VecAIndex]
            except:
                As[VecAIndex] = +A[VecAIndex]
        else:
            blas.copy(A, As)

        # As[i][j][:,k] = diag( diag(Gamma[j]))*As[i][j][:,k]
        # As[i][j][l,:] = Gamma[j][l,l]*As[i][j][l,:]
        for k in xrange(ms):
            cngrnc(U, As, trans='T', offsetx=k * (ns2))
            blas.tbmv(Gamma, As, n=ns2, k=0, ldA=1, offsetx=k * (ns2))

        misc.pack(As, Aspkd, {'l': 0, 'q': [], 's': [ns] * ms})

        # H is an m times m block matrix with i, k block
        #
        #      Hik = sum_j As[i,j]' * As[k,j]
        #
        # of size ms[i] x ms[k].  Hik = 0 if As[i,j] or As[k,j]
        # are zero for all j
        H = matrix(0.0, (ms, ms))
        blas.syrk(Aspkd, H, trans='T', beta=1.0, k=ns * (ns + 1) / 2)

        lapack.potrf(H)

        def solve(x, y, z):
            """
            Returns solution of 

                rho * ux + A'(uy) - r^-T * uz * r^-1 = bx
                A(ux)                                = by
                -ux               - r * uz * r'      = bz.

            On entry, x = bx, y = by, z = bz.
            On exit, x = ux, y = uy, z = uz.
            """

            # bz is a copy of z in the format of x
            blas.copy(z, bz)
            blas.axpy(bz, x, alpha=rho)

            # x := Gamma .* (u' * x * u)
            #    = Gamma .* (u' * (bx + rho * bz) * u)

            cngrnc(U, x, trans='T', offsetx=0)
            blas.tbmv(Gamma, x, n=ns2, k=0, ldA=1, offsetx=0)

            # y := y - As(x)
            #   := by - As( Gamma .* u' * (bx + rho * bz) * u)
            #blas.copy(x,xp)
            #pack_ip(xp,n = ns,m=1,nl=nl)
            misc.pack(x, xp, {'l': 0, 'q': [], 's': [ns]})

            blas.gemv(Aspkd, xp, y, trans = 'T',alpha = -1.0, beta = 1.0, \
                m = ns*(ns+1)/2, n = ms,offsetx = 0)

            # y := -y - A(bz)
            #    = -by - A(bz) + As(Gamma .*  (u' * (bx + rho * bz) * u)
            Af(bz, y, alpha=-1.0, beta=-1.0)

            # y := H^-1 * y
            #    = H^-1 ( -by - A(bz) + As(Gamma.* u'*(bx + rho*bz)*u) )
            #    = uy

            blas.trsv(H, y)
            blas.trsv(H, y, trans='T')

            # bz = Vt' * vz * Vt
            #    = uz where
            # vz := Gamma .* ( As'(uy)  - x )
            #     = Gamma .* ( As'(uy)  - Gamma .* (u'*(bx + rho *bz)*u) )
            #     = Gamma.^2 .* ( u' * (A'(uy) - bx - rho * bz) * u ).
            #blas.copy(x,xp)
            #pack_ip(xp,n=ns,m=1,nl=nl)

            misc.pack(x, xp, {'l': 0, 'q': [], 's': [ns]})
            blas.scal(-1.0, xp)

            blas.gemv(Aspkd,
                      y,
                      xp,
                      alpha=1.0,
                      beta=1.0,
                      m=ns * (ns + 1) / 2,
                      n=ms,
                      offsety=0)

            # bz[j] is xp unpacked and multiplied with Gamma
            misc.unpack(xp, bz, {'l': 0, 'q': [], 's': [ns]})
            blas.tbmv(Gamma, bz, n=ns2, k=0, ldA=1, offsetx=0)

            # bz = Vt' * bz * Vt
            #    = uz
            cngrnc(Vt, bz, trans='T', offsetx=0)

            symmetrize(bz, ns, offset=0)

            # x = -bz - r * uz * r'
            # z contains r.h.s. bz;  copy to x
            blas.copy(z, x)
            blas.copy(bz, z)

            cngrnc(W['r'][0], bz, offsetx=0)
            blas.axpy(bz, x)
            blas.scal(-1.0, x)

        return solve
Exemple #9
0
        def solve(x, y, z):
            """
            Returns solution of 

                rho * ux + A'(uy) - r^-T * uz * r^-1 = bx
                A(ux)                                = by
                -ux               - r * uz * r'      = bz.

            On entry, x = bx, y = by, z = bz.
            On exit, x = ux, y = uy, z = uz.
            """

            # bz is a copy of z in the format of x
            blas.copy(z, bz)
            blas.axpy(bz, x, alpha=rho, offsetx=nl, offsety=nl)
            # x := Gamma .* (u' * x * u)
            #    = Gamma .* (u' * (bx + rho * bz) * u)

            cngrnc(U, x, trans='T', offsetx=nl)
            blas.tbmv(Gamma, x, n=ns2, k=0, ldA=1, offsetx=nl)
            blas.tbmv(+W['d'], x, n=nl, k=0, ldA=1)

            # y := y - As(x)
            #   := by - As( Gamma .* u' * (bx + rho * bz) * u)

            misc.pack(x, xp, dims)
            blas.gemv(Aspkd, xp, y, trans = 'T',alpha = -1.0, beta = 1.0, \
                m = ns*(ns+1)/2, n = ms,offsetx = nl)

            #y = y - mul(+W['d'][:nl/2],xp[:nl/2])+ mul(+W['d'][nl/2:nl],xp[nl/2:nl])
            blas.tbmv(+W['d'], xp, n=nl, k=0, ldA=1)
            blas.axpy(xp, y, alpha=-1, n=ms)
            blas.axpy(xp, y, alpha=1, n=ms, offsetx=nl / 2)

            # y := -y - A(bz)
            #    = -by - A(bz) + As(Gamma .*  (u' * (bx + rho * bz) * u)

            Af(bz, y, alpha=-1.0, beta=-1.0)

            # y := H^-1 * y
            #    = H^-1 ( -by - A(bz) + As(Gamma.* u'*(bx + rho*bz)*u) )
            #    = uy

            blas.trsv(H, y)
            blas.trsv(H, y, trans='T')

            # bz = Vt' * vz * Vt
            #    = uz where
            # vz := Gamma .* ( As'(uy)  - x )
            #     = Gamma .* ( As'(uy)  - Gamma .* (u'*(bx + rho *bz)*u) )
            #     = Gamma.^2 .* ( u' * (A'(uy) - bx - rho * bz) * u ).

            misc.pack(x, xp, dims)
            blas.scal(-1.0, xp)

            blas.gemv(Aspkd,
                      y,
                      xp,
                      alpha=1.0,
                      beta=1.0,
                      m=ns * (ns + 1) / 2,
                      n=ms,
                      offsety=nl)

            #xp[:nl/2] = xp[:nl/2] + mul(+W['d'][:nl/2],y)
            #xp[nl/2:nl] = xp[nl/2:nl] - mul(+W['d'][nl/2:nl],y)

            blas.copy(y, tmp)
            blas.tbmv(+W['d'], tmp, n=nl / 2, k=0, ldA=1)
            blas.axpy(tmp, xp, n=nl / 2)

            blas.copy(y, tmp)
            blas.tbmv(+W['d'], tmp, n=nl / 2, k=0, ldA=1, offsetA=nl / 2)
            blas.axpy(tmp, xp, alpha=-1, n=nl / 2, offsety=nl / 2)

            # bz[j] is xp unpacked and multiplied with Gamma
            blas.copy(xp, bz)  #,n = nl)
            misc.unpack(xp, bz, dims)
            blas.tbmv(Gamma, bz, n=ns2, k=0, ldA=1, offsetx=nl)

            # bz = Vt' * bz * Vt
            #    = uz
            cngrnc(Vt, bz, trans='T', offsetx=nl)

            symmetrize(bz, ns, offset=nl)

            # x = -bz - r * uz * r'
            # z contains r.h.s. bz;  copy to x
            #so far, z = bzc (untouched)
            blas.copy(z, x)
            blas.copy(bz, z)

            cngrnc(W['r'][0], bz, offsetx=nl)
            blas.tbmv(W['d'], bz, n=nl, k=0, ldA=1)

            blas.axpy(bz, x)
            blas.scal(-1.0, x)