Exemple #1
0
def L1_min(Phi, y, K):
    # inequalities matrix with
    M, Nf = Phi.shape

    G = matrx(
        rearrange_G(
            scipy.linalg.block_diag(*[
                matrix([[-1, -1], [1, -1.0]]),
            ] * Nf)))
    # objective function row-matrix
    c = matrx(hstack([ones(Nf), zeros(Nf)]))
    # RHS for inequalities
    h = matrx([
        0.0,
    ] * (Nf * 2), (Nf * 2, 1), 'd')
    # equality constraint matrix
    A = matrx(hstack([Phi * 0, Phi]))

    # RHS for equality constraints
    b = matrx(y)
    # suppress standard output
    #old_stdout = sys.stdout
    #sys.stdout = mystdout = StringIO()
    print hstack([Phi * 0, Phi]).shape
    sol = solvers.lp(c, G, h, A, b)
    # restore standard output
    #sys.stdout = old_stdout
    sln = array(sol['x']).flatten()[:Nf].round(4)
    return sln
Exemple #2
0
def L1_min(Phi,y,K):
    # inequalities matrix with 
    M,Nf = Phi.shape
    G=matrx(rearrange_G(scipy.linalg.block_diag(*[matrix([[-1,-1],[1,-1.0]]),]*Nf) ))
    # objective function row-matrix
    c=matrx(np.hstack([ones(Nf),zeros(Nf)]))
    # RHS for inequalities
    h = matrx([0.0,]*(Nf*2),(Nf*2,1),'d') 
    # equality constraint matrix
    A = matrix(hstack([Phi*0,Phi]))
    # RHS for equality constraints 
    b=matrix(y)
    # suppress standard output
    old_stdout = sys.stdout
    sys.stdout = mystdout = StringIO()
    
    sol = solvers.lp(c, G, h,A,b)
    # restore standard output
    sys.stdout = old_stdout
    sln = array(sol['x']).flatten()[:Nf].round(4)
    return sln
Exemple #3
0
    Nf = len(ftime)

    N = 2 * Nf

    time_samples = np.array(range(0, N / 2, 2))
    #print time_samples.shape,ftime.shape,N,Nf
    half_indexed_time_samples = (array(time_samples) / 2).astype(int)

    Phi = dftmatrix(N / 2).real * Q_rmatrix(N)
    Phi_i = Phi[half_indexed_time_samples, :]

    # inequalities matrix with
    G = matrx(
        rearrange_G(
            scipy.linalg.block_diag(*[
                matrix([[-1, -1], [1, -1.0]]),
            ] * N)))
    # objective function row-matrix
    #c=matrx(hstack([100*ones(N),zeros(N)]))
    #if i==0:
    c = matrx(hstack([ones(N), zeros(N)]))
    #else:
    #c=matrix(hstack(ff,zeros(N)))
    # RHS for inequalities
    h = matrx([
        0.0,
    ] * (N * 2), (N * 2, 1), 'd')
    # equality constraint matrix
    A = matrx(hstack([Phi_i, Phi_i * 0]))
    # RHS for equality constraints
Exemple #4
0
   
   Nf=len(ftime)
 
   N=2*Nf
   
   time_samples=np.array(range(0,N/2,2))
   #print time_samples.shape,ftime.shape,N,Nf
   half_indexed_time_samples = (array(time_samples)/2).astype(int)
 
   
   
   Phi = dftmatrix(N/2).real*Q_rmatrix(N)
   Phi_i = Phi[half_indexed_time_samples,:]
   
   # inequalities matrix with 
   G=matrx(rearrange_G(scipy.linalg.block_diag(*[matrix([[-1,-1],[1,-1.0]]),]*N) ))
   # objective function row-matrix
   #c=matrx(hstack([100*ones(N),zeros(N)]))
   #if i==0:
   c=matrx(hstack([ones(N),zeros(N)]))
   #else:
   #c=matrix(hstack(ff,zeros(N)))
   # RHS for inequalities
   h = matrx([0.0,]*(N*2),(N*2,1),'d') 
   # equality constraint matrix
   A = matrx(hstack([Phi_i,Phi_i*0]))
   # RHS for equality constraints 
   b=matrx(ftime[half_indexed_time_samples])
   
   sol = solvers.lp(c, G, h,A,b)