Exemple #1
0
    def get_trades(self, portfolio, t=dt.datetime.today()):
        prediction = values_in_time(self.return_forecast, t)
        sorted_ret = prediction.sort_values()

        short_trades = sorted_ret.index[:self.num_short]
        long_trades = sorted_ret.index[-self.num_long:]

        u = pd.Series(0., index=prediction.index)
        u[short_trades] = -1.
        u[long_trades] = 1.
        u /= sum(abs(u))
        u = sum(portfolio) * u * self.target_turnover

        # import pdb; pdb.set_trace()
        #
        # # ex-post cash neutrality
        # old_cash = portfolio[-1]
        # if old_cash > 0:
        #     u[short] = u[short] + old_cash/self.num_short
        # else:
        #     u[long] = u[long] + old_cash/self.num_long

        return u
Exemple #2
0
 def get_rounded_trades(self, portfolio, prices, t):
     """Get trades vector as number of shares, rounded to integers."""
     return np.round(
         self.get_trades(portfolio, t) / values_in_time(prices, t))[:-1]
Exemple #3
0
    def get_trades(self, portfolio, t=None):
        """
        Get optimal trade vector for given portfolio at time t.

        Parameters
        ----------
        portfolio : pd.Series
            Current portfolio vector.
        t : pd.timestamp
            Timestamp for the optimization.
        """

        if t is None:
            t = dt.datetime.today()

        value = sum(portfolio)
        w = portfolio / value
        z = cvx.Variable(w.size)  # TODO pass index
        wplus = w.values + z

        if isinstance(self.return_forecast, BaseReturnsModel):
            alpha_term = self.return_forecast.weight_expr(t, wplus)
        else:
            alpha_term = cvx.sum(
                cvx.multiply(
                    values_in_time(self.return_forecast, t).values, wplus))

        assert (alpha_term.is_concave())

        costs, constraints = [], []

        for cost in self.costs:
            cost_expr, const_expr = cost.weight_expr(t, wplus, z, value)
            costs.append(cost_expr)
            constraints += const_expr

        constraints += [
            item for item in (con.weight_expr(t, wplus, z, value)
                              for con in self.constraints)
        ]

        for el in costs:
            assert (el.is_convex())

        for el in constraints:
            assert (el.is_dcp())

        self.prob = cvx.Problem(cvx.Maximize(alpha_term - sum(costs)),
                                [cvx.sum(z) == 0] + constraints)
        try:
            self.prob.solve(solver=self.solver, **self.solver_opts)

            if self.prob.status == 'unbounded':
                logging.error(
                    'The problem is unbounded. Defaulting to no trades')
                return self._nulltrade(portfolio)

            if self.prob.status == 'infeasible':
                logging.error(
                    'The problem is infeasible. Defaulting to no trades')
                return self._nulltrade(portfolio)

            return pd.Series(index=portfolio.index, data=(z.value * value))
        except (cvx.SolverError, TypeError):
            logging.error('The solver %s failed. Defaulting to no trades' %
                          self.solver)
            return self._nulltrade(portfolio)