def apply(self, problem): """See docstring for MatrixStuffing.apply""" inverse_data = InverseData(problem) # Form the constraints extractor = CoeffExtractor(inverse_data) params_to_P, params_to_q, flattened_variable = self.stuffed_objective( problem, extractor) # Lower equality and inequality to Zero and NonPos. cons = [] for con in problem.constraints: if isinstance(con, Equality): con = lower_equality(con) elif isinstance(con, Inequality): con = lower_ineq_to_nonpos(con) cons.append(con) # Reorder constraints to Zero, NonPos. constr_map = group_constraints(cons) ordered_cons = constr_map[Zero] + constr_map[NonPos] inverse_data.cons_id_map = {con.id: con.id for con in ordered_cons} inverse_data.constraints = ordered_cons # Batch expressions together, then split apart. expr_list = [arg for c in ordered_cons for arg in c.args] params_to_Ab = extractor.affine(expr_list) inverse_data.minimize = type(problem.objective) == Minimize new_prob = ParamQuadProg(params_to_P, params_to_q, flattened_variable, params_to_Ab, problem.variables(), inverse_data.var_offsets, ordered_cons, problem.parameters(), inverse_data.param_id_map) return new_prob, inverse_data
def apply(self, problem): inverse_data = InverseData(problem) # Form the constraints extractor = CoeffExtractor(inverse_data) params_to_objective, flattened_variable = self.stuffed_objective( problem, extractor) # Lower equality and inequality to Zero and NonNeg. cons = [] for con in problem.constraints: if isinstance(con, Equality): con = lower_equality(con) elif isinstance(con, Inequality): con = lower_ineq_to_nonneg(con) elif isinstance(con, NonPos): con = nonpos2nonneg(con) elif isinstance(con, SOC) and con.axis == 1: con = SOC(con.args[0], con.args[1].T, axis=0, constr_id=con.constr_id) elif isinstance(con, PowCone3D) and con.args[0].ndim > 1: x, y, z = con.args alpha = con.alpha con = PowCone3D(x.flatten(), y.flatten(), z.flatten(), alpha.flatten(), constr_id=con.constr_id) elif isinstance(con, ExpCone) and con.args[0].ndim > 1: x, y, z = con.args con = ExpCone(x.flatten(), y.flatten(), z.flatten(), constr_id=con.constr_id) cons.append(con) # Reorder constraints to Zero, NonNeg, SOC, PSD, EXP, PowCone3D constr_map = group_constraints(cons) ordered_cons = constr_map[Zero] + constr_map[NonNeg] + \ constr_map[SOC] + constr_map[PSD] + constr_map[ExpCone] + constr_map[PowCone3D] inverse_data.cons_id_map = {con.id: con.id for con in ordered_cons} inverse_data.constraints = ordered_cons # Batch expressions together, then split apart. expr_list = [arg for c in ordered_cons for arg in c.args] params_to_problem_data = extractor.affine(expr_list) inverse_data.minimize = type(problem.objective) == Minimize new_prob = ParamConeProg(params_to_objective, flattened_variable, params_to_problem_data, problem.variables(), inverse_data.var_offsets, ordered_cons, problem.parameters(), inverse_data.param_id_map) return new_prob, inverse_data
def apply(self, problem): inverse_data = InverseData(problem) new_obj, new_var = self.stuffed_objective(problem, inverse_data) # Form the constraints extractor = CoeffExtractor(inverse_data) new_cons = [] for con in problem.constraints: arg_list = [] for arg in con.args: A, b = extractor.get_coeffs(arg) arg_list.append(reshape(A * new_var + b, arg.shape)) new_cons.append(con.copy(arg_list)) inverse_data.cons_id_map[con.id] = new_cons[-1].id # Map of old constraint id to new constraint id. inverse_data.minimize = type(problem.objective) == Minimize new_prob = problems.problem.Problem(Minimize(new_obj), new_cons) return new_prob, inverse_data
def apply(self, problem): """See docstring for MatrixStuffing.apply""" inverse_data = InverseData(problem) # Form the constraints extractor = CoeffExtractor(inverse_data) new_obj, new_var, r = self.stuffed_objective(problem, extractor) inverse_data.r = r # Lower equality and inequality to Zero and NonPos. cons = [] for con in problem.constraints: if isinstance(con, Equality): con = lower_equality(con) elif isinstance(con, Inequality): con = lower_inequality(con) cons.append(con) # Batch expressions together, then split apart. expr_list = [arg for c in cons for arg in c.args] problem_data_tensor = extractor.affine(expr_list) Afull, bfull = canon.get_matrix_and_offset_from_unparameterized_tensor( problem_data_tensor, new_var.size) if 0 not in Afull.shape and 0 not in bfull.shape: Afull = cvxtypes.constant()(Afull) bfull = cvxtypes.constant()(np.atleast_1d(bfull)) new_cons = [] offset = 0 for orig_con, con in zip(problem.constraints, cons): arg_list = [] for arg in con.args: A = Afull[offset:offset + arg.size, :] b = bfull[offset:offset + arg.size] arg_list.append(reshape(A @ new_var + b, arg.shape)) offset += arg.size new_constraint = con.copy(arg_list) new_cons.append(new_constraint) inverse_data.constraints = new_cons inverse_data.minimize = type(problem.objective) == Minimize new_prob = problems.problem.Problem(Minimize(new_obj), new_cons) return new_prob, inverse_data
def apply(self, problem): inverse_data = InverseData(problem) # Form the constraints extractor = CoeffExtractor(inverse_data) new_obj, new_var, r = self.stuffed_objective(problem, extractor) inverse_data.r = r # Lower equality and inequality to Zero and NonPos. cons = [] for con in problem.constraints: if isinstance(con, Equality): con = lower_equality(con) elif isinstance(con, Inequality): con = lower_inequality(con) elif isinstance(con, SOC) and con.axis == 1: con = SOC(con.args[0], con.args[1].T, axis=0, constr_id=con.constr_id) cons.append(con) # Batch expressions together, then split apart. expr_list = [arg for con in cons for arg in con.args] Afull, bfull = extractor.affine(expr_list) new_cons = [] offset = 0 for con in cons: arg_list = [] for arg in con.args: A = Afull[offset:offset + arg.size, :] b = bfull[offset:offset + arg.size] arg_list.append(reshape(A * new_var + b, arg.shape)) offset += arg.size new_cons.append(con.copy(arg_list)) inverse_data.cons_id_map[con.id] = new_cons[-1].id # Map of old constraint id to new constraint id. inverse_data.minimize = type(problem.objective) == Minimize new_prob = problems.problem.Problem(Minimize(new_obj), new_cons) return new_prob, inverse_data
def apply(self, problem): """Returns a stuffed problem. The returned problem is a minimization problem in which every constraint in the problem has affine arguments that are expressed in the form A @ x + b. Parameters ---------- problem: The problem to stuff; the arguments of every constraint must be affine constraints: A list of constraints, whose arguments are affine Returns ------- Problem The stuffed problem InverseData Data for solution retrieval """ inverse_data = InverseData(problem) # Form the constraints extractor = CoeffExtractor(inverse_data) new_obj, new_var, r = self.stuffed_objective(problem, extractor) inverse_data.r = r # Lower equality and inequality to Zero and NonPos. cons = [] for con in problem.constraints: if isinstance(con, Equality): con = lower_equality(con) elif isinstance(con, Inequality): con = lower_inequality(con) elif isinstance(con, SOC) and con.axis == 1: con = SOC(con.args[0], con.args[1].T, axis=0, constr_id=con.constr_id) cons.append(con) # Batch expressions together, then split apart. expr_list = [arg for c in cons for arg in c.args] Afull, bfull = extractor.affine(expr_list) if 0 not in Afull.shape and 0 not in bfull.shape: Afull = cvxtypes.constant()(Afull) bfull = cvxtypes.constant()(bfull) new_cons = [] offset = 0 for con in cons: arg_list = [] for arg in con.args: A = Afull[offset:offset+arg.size, :] b = bfull[offset:offset+arg.size] arg_list.append(reshape(A*new_var + b, arg.shape)) offset += arg.size new_cons.append(con.copy(arg_list)) # Map old constraint id to new constraint id. inverse_data.cons_id_map[con.id] = new_cons[-1].id inverse_data.minimize = type(problem.objective) == Minimize new_prob = problems.problem.Problem(Minimize(new_obj), new_cons) return new_prob, inverse_data