def testPolygon(self): p = czml.Polygon() m = czml.Material() sc = czml.SolidColor(color={'rgba': [0, 255, 127, 55]}) m.solidColor = sc p.material = m self.assertEqual(p.data(), {'material': {'solidColor': {'color': {'rgba': [0, 255, 127, 55]}} } } ) p2 = czml.Polygon() p2.loads(p.dumps()) self.assertEqual(p.data(), p2.data()) p3 = czml.Polygon(color={'rgba': [0, 255, 127, 55]}) self.assertEqual(p.data(), p3.data())
def testCZMLPacket(self): p = czml.CZMLPacket(id='abc') self.assertEqual(p.dumps(), '{"id": "abc"}') bb = czml.Billboard() bb.image = 'http://localhost/img.png' bb.scale = 0.7 bb.show = True p.billboard = bb self.assertEqual(p.data(), {'billboard': {'image': 'http://localhost/img.png', 'scale': 0.7, 'show': True}, 'id': 'abc'}) p2 = czml.CZMLPacket(id='abc') p2.loads(p.dumps()) self.assertEqual(p.data(), p2.data()) pos = czml.Position() coords = [7.0, 0.0, 1.0, 2.0, 6.0, 3.0, 4.0, 5.0] pos.cartesian = coords p.position = pos l = czml.Label() l.text = 'test label' l.show = False p.label = l self.assertEqual(p.data(), {'billboard': {'image': 'http://localhost/img.png', 'scale': 0.7, 'show': True}, 'id': 'abc', 'label': {'show': False, 'text': 'test label'}, 'position': {'cartesian': [7.0, 0.0, 1.0, 2.0, 6.0, 3.0, 4.0, 5.0]}, }) p2.loads(p.dumps()) self.assertEqual(p.data(), p2.data()) p3 = czml.CZMLPacket(id='cde') p3.point = {'color': {'rgba': [0, 255, 127, 55]}, 'show': True} self.assertEqual(p3.data(), {'id': 'cde', 'point': {'color': {'rgba': [0, 255, 127, 55]}, 'show': True}}) p32 = czml.CZMLPacket(id='abc') p32.loads(p3.dumps()) self.assertEqual(p3.data(), p32.data()) p4 = czml.CZMLPacket(id='defg') pl = czml.Polyline() pl.color = {'rgba': [0, 255, 127, 55]} pl.width = 10 pl.outlineWidth = 2 pl.show = True v = czml.VertexPositions() v.cartographicDegrees = [0.0, 0.0, .0, 1.0, 1.0, 1.0] p4.vertexPositions = v p4.polyline = pl self.assertEqual(p4.data(), {'polyline': {'color': {'rgba': [0, 255, 127, 55]}, 'width': 10, 'outlineWidth': 2, 'show': True}, 'id': 'defg', 'vertexPositions': {'cartographicDegrees': [0.0, 0.0, 0.0, 1.0, 1.0, 1.0]} }) p42 = czml.CZMLPacket(id='abc') p42.loads(p4.dumps()) self.assertEqual(p4.data(), p42.data()) p5 = czml.CZMLPacket(id='efgh') p5.vertexPositions = v poly = czml.Polygon(color={'rgba': [0, 255, 127, 55]}) p5.polygon = poly self.assertEqual(p5.data(), {'polygon': {'material': {'solidColor': {'color': {'rgba': [0, 255, 127, 55]}}}}, 'id': 'efgh', 'vertexPositions': {'cartographicDegrees': [0.0, 0.0, 0.0, 1.0, 1.0, 1.0]}}) p52 = czml.CZMLPacket(id='abc') p52.loads(p5.dumps()) self.assertEqual(p5.data(), p52.data()) return p
def testPolygon(self): # Create a new polygon img = czml.Image(image='http://localhost/img.png', repeat=2) mat = czml.Material(image=img) pts = geometry.LineString([(50, 20, 2), (60, 30, 3), (50, 30, 4), (60, 20, 5)]) pos = czml.Positions(cartographicDegrees=pts) col = {'rgba': [0, 255, 127, 55]} pol = czml.Polygon(show=True, material=mat, positions=pos, perPositionHeight=True, fill=True, outline=True, outlineColor=col) self.assertEqual( pol.data(), { 'show': True, 'fill': True, 'outline': True, 'perPositionHeight': True, 'outlineColor': { 'rgba': [0, 255, 127, 55] }, 'material': { 'image': { 'image': 'http://localhost/img.png', 'repeat': 2 }, }, 'positions': { 'cartographicDegrees': [50, 20, 2, 60, 30, 3, 50, 30, 4, 60, 20, 5] }, }) # Create a new polygon from an existing polygon pol2 = czml.Polygon() pol2.loads(pol.dumps()) self.assertEqual(pol2.data(), pol.data()) # Modify an existing polygon grid = czml.Grid(color={'rgba': [0, 55, 127, 255]}, cellAlpha=0.4, lineCount=5, lineThickness=2, lineOffset=0.3) mat2 = czml.Material(grid=grid) pts2 = geometry.LineString([(1.5, 1.2, 0), (1.6, 1.3, 0), (1.5, 1.3, 0), (1.6, 1.2, 0)]) pos2 = czml.Positions(cartographicRadians=pts2) pol2.material = mat2 pol2.positions = pos2 pol2.perPositionHeight = False pol2.height = 7 pol2.extrudedHeight = 30 self.assertEqual( pol2.data(), { 'show': True, 'fill': True, 'outline': True, 'perPositionHeight': False, 'height': 7, 'extrudedHeight': 30, 'outlineColor': { 'rgba': [0, 255, 127, 55] }, 'material': { 'grid': { 'color': { 'rgba': [0, 55, 127, 255] }, 'cellAlpha': 0.4, 'lineCount': 5, 'lineThickness': 2, 'lineOffset': 0.3 }, }, 'positions': { 'cartographicRadians': [1.5, 1.2, 0, 1.6, 1.3, 0, 1.5, 1.3, 0, 1.6, 1.2, 0] }, }) # Add a polygon to a CZML packet packet = czml.CZMLPacket(id='abc') packet.polygon = pol2 self.assertEqual( packet.data(), { 'id': 'abc', 'polygon': { 'show': True, 'fill': True, 'outline': True, 'perPositionHeight': False, 'height': 7, 'extrudedHeight': 30, 'outlineColor': { 'rgba': [0, 255, 127, 55] }, 'material': { 'grid': { 'color': { 'rgba': [0, 55, 127, 255] }, 'cellAlpha': 0.4, 'lineCount': 5, 'lineThickness': 2, 'lineOffset': 0.3 }, }, 'positions': { 'cartographicRadians': [1.5, 1.2, 0, 1.6, 1.3, 0, 1.5, 1.3, 0, 1.6, 1.2, 0] }, }, })
def czml(self): doc = czml.CZML(); iso = self.date.isoformat() # Generate time-specific lists for various objects central_polyline_degrees = [] north_polyline_degrees = [] south_polyline_degrees = [] ellipse_position = [] ellipse_semiMajorAxis = [] ellipse_semiMinorAxis = [] ellipse_rotation = [] for t in range(len(self.time)): time = iso + "T" + self.time[t] + ":00Z" # Define polyline waypoints only where data exist if self.position['north'][t] != None: north_polyline_degrees += [self.position['north'][t][0], self.position['north'][t][1], 0.0] if self.position['central'][t] != None: central_polyline_degrees += [self.position['central'][t][0], self.position['central'][t][1], 0.0] if self.position['south'][t] != None: south_polyline_degrees += [self.position['south'][t][0], self.position['south'][t][1], 0.0] # Define ellipse positions and attributes for every time in the interval, using limits where necessary use_limit = min(int(math.floor(t/(len(self.time)/2))),1) if self.position['north'][t] == None: north = self.limits['north'][use_limit] else: north = self.position['north'][t] if self.position['central'][t] == None: central = self.limits['central'][use_limit] else: central = self.position['central'][t] if self.position['south'][t] == None: south = self.limits['south'][use_limit] else: south = self.position['south'][t] # Approximate ellipse semiMajorAxis from vincenty distance between limit polylines north2 = (north[1], north[0]) south2 = (south[1], south[0]) semi_major_axis = vincenty(north2, south2).meters / 2 # Approximate elipse semiMinorAxis from sun altitude (probably way wrong!) ellipse_axis_ratio = self.sun_altitude[t] / 90 semi_minor_axis = semi_major_axis * ellipse_axis_ratio # Approximate ellipse rotation using basic spheroid (TODO: replace with WGS-84) # Calculate bearing in both directions and average them nlat = north[1]/180 * math.pi; nlon = north[0]/180 * math.pi; clat = central[1]/180 * math.pi; clon = central[0]/180 * math.pi; slat = south[1]/180 * math.pi; slon = south[0]/180 * math.pi; y = math.sin(slon-nlon) * math.cos(slat); x = math.cos(nlat) * math.sin(slat) - math.sin(nlat) * math.cos(slat) * math.cos(slon-nlon); initial_bearing = math.atan2(y, x) if (initial_bearing < 0): initial_bearing += math.pi * 2 y = math.sin(nlon-slon) * math.cos(nlat); x = math.cos(slat) * math.sin(nlat) - math.sin(slat) * math.cos(nlat) * math.cos(nlon-slon); final_bearing = math.atan2(y, x) - math.pi if (final_bearing < 0): final_bearing += math.pi * 2 rotation = -1 * ((initial_bearing + final_bearing) / 2 - (math.pi / 2)) ellipse_position += [time, central[0], central[1], 0.0] ellipse_semiMajorAxis += [time, round(semi_major_axis, 3)] ellipse_semiMinorAxis += [time, round(semi_minor_axis, 3)] ellipse_rotation += [time, round(rotation, 3)] # Generate document packet with clock start_time = iso + "T" + self.time[0] + ":00Z" end_time = iso + "T" + self.time[-1] + ":00Z" packet = czml.CZMLPacket(id='document',version='1.0') c = czml.Clock() c.multiplier = 300 c.range = "LOOP_STOP" c.step = "SYSTEM_CLOCK_MULTIPLIER" c.currentTime = start_time c.interval = start_time + "/" + end_time packet.clock = c doc.packets.append(packet) # Generate a polyline packet for the north and south polylines, connected and filled limit_polyline_degrees = list(north_polyline_degrees) point = len(south_polyline_degrees)/3 while (point > 0): offset = (point-1) * 3 limit_polyline_degrees += [ south_polyline_degrees[offset], south_polyline_degrees[offset+1], south_polyline_degrees[offset+2] ] point -= 1 packet_id = iso + '_bounds_polygon' packet = czml.CZMLPacket(id=packet_id) boc = czml.Color(rgba=(232, 72, 68, 255)) bsc = czml.SolidColor(color=czml.Color(rgba=(0, 0, 0, 66))) bmat = czml.Material(solidColor=bsc) bdeg = limit_polyline_degrees bpos = czml.Positions(cartographicDegrees=bdeg) bpg = czml.Polygon(show=True, height=0, outline=True, outlineColor=boc, outlineWidth=2, material=bmat, positions=bpos) packet.polygon = bpg doc.packets.append(packet) # Generate central polyline packet packet_id = iso + '_central_polyline' packet = czml.CZMLPacket(id=packet_id) csc = czml.SolidColor(color=czml.Color(rgba=(241, 226, 57, 255))) cmat = czml.Material(solidColor=csc) cpos = czml.Positions(cartographicDegrees=central_polyline_degrees) cpl = czml.Polyline(show=True, width=4, followSurface=True, material=cmat, positions=cpos) packet.polyline = cpl doc.packets.append(packet) # Generate ellipse shadow packet packet_id = iso + '_shadow_ellipse' packet = czml.CZMLPacket(id=packet_id) esc = czml.SolidColor(color=czml.Color(rgba=(0, 0, 0, 160))) emat = czml.Material(solidColor=esc) xmaj = czml.Number(ellipse_semiMajorAxis) xmin = czml.Number(ellipse_semiMinorAxis) rot = czml.Number(ellipse_rotation) ell = czml.Ellipse(show=True, fill=True, granularity=0.002, material=emat, semiMajorAxis=xmaj, semiMinorAxis=xmin, rotation=rot) packet.ellipse = ell packet.position = czml.Position(cartographicDegrees=ellipse_position) doc.packets.append(packet) return list(doc.data())