def train_with_data_aug(train_augs, test_augs, lr=0.001): batch_size, net = 2, d2l.resnet18(10) optimizer = torch.optim.Adam(net.parameters(), lr=lr) loss = torch.nn.CrossEntropyLoss() train_iter = load_cifar10(True, train_augs, batch_size) test_iter = load_cifar10(False, test_augs, batch_size) train(train_iter, test_iter, net, loss, optimizer, device, num_epochs=10)
def train_with_data_aug(train_augs, test_augs, lr=0.001): # 数据 batch_size = 256 train_iter = load_cifar10(True, train_augs, batch_size) # 训练数据的迭代器 test_iter = load_cifar10(False, test_augs, batch_size) # 预测数据的迭代器 net = d2l.resnet18(10) # 模型,输出10种分类概率 num_epochs = 10 # 参数 optimizer = torch.optim.Adam(net.parameters(), lr=lr) # 优化器 loss = torch.nn.CrossEntropyLoss() # 损失函数 d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs) # 训练