#%% # Plot ridges over continuated section # fig = plt.figure() # ax = plt.gca() # pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) # pEXP.plot_ridges_harmonic(dfI,dfII,dfIII,ax=ax) #%% # Filter ridges (regionally constrainsted) dfI_f, dfII_f, dfIII_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=minAlt_ridge, maxDepth=maxAlt_ridge, minlength=3, rmvNaN=True) df_f = dfI_f, dfII_f, dfIII_f #%% # plot ridges fitted over continuated section # fig = plt.figure() # ax = plt.gca() # pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) # pEXP.plot_ridges_harmonic(dfI_f,dfII_f,dfIII_f,ax=ax,label=True) df_fit = dEXP.fit_ridges(df_f,
#%% # Plot ridges over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax, Xaxis=x_axis) pEXP.plot_ridges_harmonic(dfI, dfII, dfIII, ax=ax) #%% # Filter ridges regionally constrainsted) dfI_f, dfII_f, dfIII_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=1000, maxDepth=3000, minlength=3, rmvNaN=True) df_f = dfI_f, dfII_f, dfIII_f # df_f = dfI, dfII, dfIII #%% # Plot ridges fitted over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) pEXP.plot_ridges_harmonic(dfI_f, dfII_f, dfIII_f, ax=ax, label=True)
#%% # Plot ridges over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax, Xaxis=x_axis) pEXP.plot_ridges_harmonic(dfI, dfII, dfIII, ax=ax) #%% # Filter ridges regionally constrainsted) D_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=1000, maxDepth=3000, minlength=3, rmvNaN=True, heights=[hI, hII, hIII]) dfI_f, dfII_f, dfIII_f = D_f[0:3] hI_f, hII_f, hIII_f = D_f[3:6] df_f = D_f[0:3] #%% # Plot ridges fitted over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=)
#%% # filter ridges using a minimum length criterium and and filter for a specific range of altitude # a =2.25 # if x_axis=='y': # xf_min = a*x1 # xf_max = a*x2 # else: # xf_min = a*y1 # xf_max = a*y2 D_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=500, maxDepth=5000, minlength=8, rmvNaN=True, xmin=1000, xmax=19000, heights=[hI, hII, hIII]) dfI_f, dfII_f, dfIII_f = D_f[0:3] hI_f, hII_f, hIII_f = D_f[3:6] df_f = D_f[0:3] #%% # plot filtered ridges fitted over continuated section fig = plt.figure() ax = plt.gca()
label=label_prop, method_peak='find_peaks') #%% ------------------------------- plot ridges over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) pEXP.plot_ridges_harmonic(dfI,dfII,dfIII,ax=ax) #%% ------------------------------- filter ridges regionally constrainsted) dfI_f,dfII_f, dfIII_f = dEXP.filter_ridges(dfI,dfII,dfIII, 1,maxAlt_ridge, minlength=8,rmvNaN=True) df_f = dfI_f, dfII_f, dfIII_f #%% ------------------------------- plot ridges fitted over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) pEXP.plot_ridges_harmonic(dfI_f,dfII_f,dfIII_f,ax=ax,label=True) df_fit = dEXP.fit_ridges(df_f) # fit ridges on filtered data pEXP.plot_ridges_sources(df_fit, ax=ax, z_max_source=-max_elevation*2, ridge_type=[0,1,2],ridge_nb=None)
#%% # Plot ridges over continuated section # fig = plt.figure() # ax = plt.gca() # pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) # pEXP.plot_ridges_harmonic(dfI,dfII,dfIII,ax=ax) #%% # Filter ridges (regionally constrainsted) dfI_f, dfII_f, dfIII_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=minAlt_ridge, maxDepth=maxAlt_ridge, minlength=7, rmvNaN=True, xmin=100, xmax=300) df_f = dfI_f, dfII_f, dfIII_f # dfI_f,dfII_f, dfIII_f = dEXP.filter_ridges(dfI,dfII,dfIII, # minDepth=minAlt_ridge,maxDepth=maxAlt_ridge, # minlength=7,rmvNaN=True) # df_f = dfI_f, dfII_f, dfIII_f # k=['EX_xpos1', 'EX_xpos2', 'EX_xpos3', 'EX_xpos4'] # minx = xmin # dfI.columns[1:] # import numpy as np
Vminmax=[0, 0.35], p1p2=p) cbar = plt.colorbar(cmap, shrink=0.25, pad=0.04) cbar.set_label('upwc voltage (V)') plt.tight_layout() pEXP.plot_ridges_harmonic(dfI, dfII, dfIII, ax=ax) plt.xlim([200, 600]) plt.savefig('ridges_raw_' + str(file) + '.png', dpi=450) #%% ------------------------------- filter ridges regionally constrainsted) dfI_f, dfII_f, dfIII_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=minAlt_ridge, maxDepth=maxAlt_ridge, minlength=5, rmvNaN=True, xmin=100, xmax=700, Xaxis=x_axis) df_f = dfI_f, dfII_f, dfIII_f #%% ------------------------------- plot ridges fitted over continuated section fig = plt.figure() ax = plt.gca() plt, cmap = pEXP.plot_xy(mesh, label=label_prop, ax=ax,
fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax, Xaxis=x_axis) pEXP.plot_ridges_harmonic(dfI, dfII, dfIII, ax=ax) #%% ------------------------------- filter ridges regionally constrainsted) # dfI_f,dfII_f, dfIII_f = dEXP.filter_ridges(dfI,dfII,dfIII, # minAlt_ridge,maxAlt_ridge, # minlength=5,rmvNaN=True) dfI_f, dfII_f, dfIII_f = dEXP.filter_ridges(dfI, dfII, dfIII, minAlt_ridge, maxAlt_ridge, minlength=8, rmvNaN=True, xmin=150, xmax=450, Xaxis=x_axis) # dfI_f,dfII_f, dfIII_f = dEXP.filter_ridges(dfI,dfII,dfIII, # minAlt_ridge,maxAlt_ridge, # minlength=5,rmvNaN=True, # xmin=284200) df_f = dfI_f, dfII_f, dfIII_f #%% ------------------------------- plot ridges fitted over continuated section fig = plt.figure()
#%% # filter ridges using a minimum length criterium and and filter for a specific range of altitude a = 2.25 if x_axis == 'y': xf_min = a * x1 xf_max = a * x2 else: xf_min = -5800 xf_max = a * x2 D_f = dEXP.filter_ridges(dfI, dfII, dfIII, minDepth=200, maxDepth=2000, minlength=8, rmvNaN=True, xmin=xf_min, xmax=xf_max, heights=[hI, hII, hIII]) D_f = D dfI_f, dfII_f, dfIII_f = D_f[0:3] hI_f, hII_f, hIII_f = D_f[3:6] df_f = D_f[0:3] #%% # plot filtered ridges fitted over continuated section fig = plt.figure() ax = plt.gca()