def opf_consfcn(x, om, Ybus, Yf, Yt, ppopt, il=None, *args): """Evaluates nonlinear constraints and their Jacobian for OPF. Constraint evaluation function for AC optimal power flow, suitable for use with L{pips}. Computes constraint vectors and their gradients. @param x: optimization vector @param om: OPF model object @param Ybus: bus admittance matrix @param Yf: admittance matrix for "from" end of constrained branches @param Yt: admittance matrix for "to" end of constrained branches @param ppopt: PYPOWER options vector @param il: (optional) vector of branch indices corresponding to branches with flow limits (all others are assumed to be unconstrained). The default is C{range(nl)} (all branches). C{Yf} and C{Yt} contain only the rows corresponding to C{il}. @return: C{h} - vector of inequality constraint values (flow limits) limit^2 - flow^2, where the flow can be apparent power real power or current, depending on value of C{OPF_FLOW_LIM} in C{ppopt} (only for constrained lines). C{g} - vector of equality constraint values (power balances). C{dh} - (optional) inequality constraint gradients, column j is gradient of h(j). C{dg} - (optional) equality constraint gradients. @see: L{opf_costfcn}, L{opf_hessfcn} @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"] vv, _, _, _ = om.get_idx() ## problem dimensions nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ng = gen.shape[0] ## number of dispatchable injections nxyz = len(x) ## total number of control vars of all types ## set default constrained lines if il is None: il = arange(nl) ## all lines have limits by default nl2 = len(il) ## number of constrained lines ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ## put Pg & Qg back in gen gen[:, PG] = Pg * baseMVA ## active generation in MW gen[:, QG] = Qg * baseMVA ## reactive generation in MVAr ## rebuild Sbus Sbus = makeSbus(baseMVA, bus, gen) ## net injected power in p.u. ## ----- evaluate constraints ----- ## reconstruct V Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] V = Vm * exp(1j * Va) ## evaluate power flow equations mis = V * conj(Ybus * V) - Sbus ##----- evaluate constraint function values ----- ## first, the equality constraints (power flow) g = r_[ mis.real, ## active power mismatch for all buses mis.imag ] ## reactive power mismatch for all buses ## then, the inequality constraints (branch flow limits) if nl2 > 0: flow_max = (branch[il, RATE_A] / baseMVA)**2 flow_max[flow_max == 0] = Inf if ppopt['OPF_FLOW_LIM'] == 2: ## current magnitude limit, |I| If = Yf * V It = Yt * V h = r_[ If * conj(If) - flow_max, ## branch I limits (from bus) It * conj(It) - flow_max ].real ## branch I limits (to bus) else: ## compute branch power flows ## complex power injected at "from" bus (p.u.) Sf = V[ branch[il, F_BUS].astype(int) ] * conj(Yf * V) ## complex power injected at "to" bus (p.u.) St = V[ branch[il, T_BUS].astype(int) ] * conj(Yt * V) if ppopt['OPF_FLOW_LIM'] == 1: ## active power limit, P (Pan Wei) h = r_[ Sf.real**2 - flow_max, ## branch P limits (from bus) St.real**2 - flow_max ] ## branch P limits (to bus) else: ## apparent power limit, |S| h = r_[ Sf * conj(Sf) - flow_max, ## branch S limits (from bus) St * conj(St) - flow_max ].real ## branch S limits (to bus) else: h = zeros((0,1)) ##----- evaluate partials of constraints ----- ## index ranges iVa = arange(vv["i1"]["Va"], vv["iN"]["Va"]) iVm = arange(vv["i1"]["Vm"], vv["iN"]["Vm"]) iPg = arange(vv["i1"]["Pg"], vv["iN"]["Pg"]) iQg = arange(vv["i1"]["Qg"], vv["iN"]["Qg"]) iVaVmPgQg = r_[iVa, iVm, iPg, iQg].T ## compute partials of injected bus powers dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus, V) ## w.r.t. V ## Pbus w.r.t. Pg, Qbus w.r.t. Qg neg_Cg = sparse((-ones(ng), (gen[:, GEN_BUS], range(ng))), (nb, ng)) ## construct Jacobian of equality constraints (power flow) and transpose it dg = lil_matrix((2 * nb, nxyz)) blank = sparse((nb, ng)) dg[:, iVaVmPgQg] = vstack([ ## P mismatch w.r.t Va, Vm, Pg, Qg hstack([dSbus_dVa.real, dSbus_dVm.real, neg_Cg, blank]), ## Q mismatch w.r.t Va, Vm, Pg, Qg hstack([dSbus_dVa.imag, dSbus_dVm.imag, blank, neg_Cg]) ], "csr") dg = dg.T if nl2 > 0: ## compute partials of Flows w.r.t. V if ppopt['OPF_FLOW_LIM'] == 2: ## current dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft = \ dIbr_dV(branch[il, :], Yf, Yt, V) else: ## power dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft = \ dSbr_dV(branch[il, :], Yf, Yt, V) if ppopt['OPF_FLOW_LIM'] == 1: ## real part of flow (active power) dFf_dVa = dFf_dVa.real dFf_dVm = dFf_dVm.real dFt_dVa = dFt_dVa.real dFt_dVm = dFt_dVm.real Ff = Ff.real Ft = Ft.real ## squared magnitude of flow (of complex power or current, or real power) df_dVa, df_dVm, dt_dVa, dt_dVm = \ dAbr_dV(dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft) ## construct Jacobian of inequality constraints (branch limits) ## and transpose it. dh = lil_matrix((2 * nl2, nxyz)) dh[:, r_[iVa, iVm].T] = vstack([ hstack([df_dVa, df_dVm]), ## "from" flow limit hstack([dt_dVa, dt_dVm]) ## "to" flow limit ], "csr") dh = dh.T else: dh = None return h, g, dh, dg
def opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, rh0, il=None): """Evaluates Hessian of Lagrangian for AC OPF. Hessian evaluation function for AC optimal power flow, suitable for use with L{pips}. Examples:: Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il, cost_mult) @param x: optimization vector @param lmbda: C{eqnonlin} - Lagrange multipliers on power balance equations. C{ineqnonlin} - Kuhn-Tucker multipliers on constrained branch flows. @param om: OPF model object @param Ybus: bus admittance matrix @param Yf: admittance matrix for "from" end of constrained branches @param Yt: admittance matrix for "to" end of constrained branches @param ppopt: PYPOWER options vector @param il: (optional) vector of branch indices corresponding to branches with flow limits (all others are assumed to be unconstrained). The default is C{range(nl)} (all branches). C{Yf} and C{Yt} contain only the rows corresponding to C{il}. @param cost_mult: (optional) Scale factor to be applied to the cost (default = 1). @return: Hessian of the Lagrangian. @see: L{opf_costfcn}, L{opf_consfcn} """ ppc = om.get_ppc() baseMVA, bus, gen, branch = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"] vv, _, _, _ = om.get_idx() ## unpack needed parameters nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ng = gen.shape[0] ## number of dispatchable injections nxyz = len(x) ## total number of control vars of all types ## set default constrained lines if il is None: il = arange(nl) ## all lines have limits by default nl2 = len(il) ## number of constrained lines ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ## put Pg & Qg back in gen gen[:, PG] = Pg * baseMVA ## active generation in MW gen[:, QG] = Qg * baseMVA ## reactive generation in MVAr ## reconstruct V Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] V = Vm * exp(1j * Va) nxtra = nxyz - 2 * nb ## ----- evaluate d2f ----- d2f_dv2 = sparse(rh0 * ones(2 * nb), (range(2 * nb), range(2 * nb), (2 * nb, nxyz))) blank_dv2 = sparse((2 * nb, 2 * ng)) blank_dg2 = sparse((2 * ng, nxyz)) # d2f = vstack([d2f_dv2, blank_dv2], "csr") d2f = hstack([d2f_dv2, blank_dg2], "csr") ##----- evaluate Hessian of power balance constraints ----- nlam = int(len(lmbda["eqnonlin"]) / 2) lamP = lmbda["eqnonlin"][:nlam] lamQ = lmbda["eqnonlin"][nlam:nlam + nlam] Gpaa, Gpav, Gpva, Gpvv = d2Sbus_dV2(Ybus, V, lamP) Gqaa, Gqav, Gqva, Gqvv = d2Sbus_dV2(Ybus, V, lamQ) d2G = vstack([ hstack([ vstack([hstack([Gpaa, Gpav]), hstack([Gpva, Gpvv])]).real + vstack([hstack([Gqaa, Gqav]), hstack([Gqva, Gqvv])]).imag, sparse((2 * nb, nxtra)) ]), hstack([sparse( (nxtra, 2 * nb)), sparse((nxtra, nxtra))]) ], "csr") ##----- evaluate Hessian of flow constraints ----- nmu = int(len(lmbda["ineqnonlin"]) / 2) muF = lmbda["ineqnonlin"][:nmu] muT = lmbda["ineqnonlin"][nmu:nmu + nmu] if ppopt['OPF_FLOW_LIM'] == 2: ## current dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It = dIbr_dV(branch, Yf, Yt, V) Hfaa, Hfav, Hfva, Hfvv = d2AIbr_dV2(dIf_dVa, dIf_dVm, If, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2AIbr_dV2(dIt_dVa, dIt_dVm, It, Yt, V, muT) else: f = branch[il, F_BUS].astype(int) ## list of "from" buses t = branch[il, T_BUS].astype(int) ## list of "to" buses ## connection matrix for line & from buses Cf = sparse((ones(nl2), (arange(nl2), f)), (nl2, nb)) ## connection matrix for line & to buses Ct = sparse((ones(nl2), (arange(nl2), t)), (nl2, nb)) dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = \ dSbr_dV(branch[il,:], Yf, Yt, V) if ppopt['OPF_FLOW_LIM'] == 1: ## real power Hfaa, Hfav, Hfva, Hfvv = d2ASbr_dV2(dSf_dVa.real, dSf_dVm.real, Sf.real, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2ASbr_dV2(dSt_dVa.real, dSt_dVm.real, St.real, Ct, Yt, V, muT) else: ## apparent power Hfaa, Hfav, Hfva, Hfvv = \ d2ASbr_dV2(dSf_dVa, dSf_dVm, Sf, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = \ d2ASbr_dV2(dSt_dVa, dSt_dVm, St, Ct, Yt, V, muT) d2H = vstack([ hstack([ vstack([hstack([Hfaa, Hfav]), hstack([Hfva, Hfvv])]) + vstack([hstack([Htaa, Htav]), hstack([Htva, Htvv])]), sparse((2 * nb, nxtra)) ]), hstack([sparse( (nxtra, 2 * nb)), sparse((nxtra, nxtra))]) ], "csr") ##----- do numerical check using (central) finite differences ----- # if 0: # nx = len(x) # step = 1e-lamda10 # # num_d2G = sparse((nx, nx)) # num_d2H = sparse((nx, nx)) # for i in range(nx): # xp = x # xm = x # xp[i] = x[i] + step / 2 # xm[i] = x[i] - step / 2 # # evaluate cost & gradients # _, dfp = opf_costfcn(xp, om) # _, dfm = opf_costfcn(xm, om) # # evaluate constraints & gradients # _, _, dHp, dGp = opf_consfcn(xp, om, Ybus, Yf, Yt, ppopt, il) # _, _, dHm, dGm = opf_consfcn(xm, om, Ybus, Yf, Yt, ppopt, il) # # num_d2G[:, i] = (dGp - dGm) * lmbda["eqnonlin"] / step # num_d2H[:, i] = (dHp - dHm) * lmbda["ineqnonlin"] / step # # d2G_err = max(max(abs(d2G - num_d2G))) # d2H_err = max(max(abs(d2H - num_d2H))) # # if d2G_err > 1e-lamda10: # print('Max difference in d2G: %g' % d2G_err) # if d2H_err > 1e-6: # print('Max difference in d2H: %g' % d2H_err) return d2f + d2G + d2H
def opf_consfcn(x, om, Ybus, Yf, Yt, ppopt, il=None, *args): """Evaluates nonlinear constraints and their Jacobian for OPF. Constraint evaluation function for AC optimal power flow, suitable for use with L{pips}. Computes constraint vectors and their gradients. @param x: optimization vector @param om: OPF model object @param Ybus: bus admittance matrix @param Yf: admittance matrix for "from" end of constrained branches @param Yt: admittance matrix for "to" end of constrained branches @param ppopt: PYPOWER options vector @param il: (optional) vector of branch indices corresponding to branches with flow limits (all others are assumed to be unconstrained). The default is C{range(nl)} (all branches). C{Yf} and C{Yt} contain only the rows corresponding to C{il}. @return: C{h} - vector of inequality constraint values (flow limits) limit^2 - flow^2, where the flow can be apparent power real power or current, depending on value of C{OPF_FLOW_LIM} in C{ppopt} (only for constrained lines). C{g} - vector of equality constraint values (power balances). C{dh} - (optional) inequality constraint gradients, column j is gradient of h(j). C{dg} - (optional) equality constraint gradients. """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"] vv, _, _, _ = om.get_idx() ## problem dimensions nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ng = gen.shape[0] ## number of dispatchable injections nxyz = len(x) ## total number of control vars of all types ## set default constrained lines if il is None: il = arange(nl) ## all lines have limits by default nl2 = len(il) ## number of constrained lines ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ## put Pg & Qg back in gen gen[:, PG] = Pg * baseMVA ## active generation in MW gen[:, QG] = Qg * baseMVA ## reactive generation in MVAr ## rebuild Sbus Sbus = makeSbus(baseMVA, bus, gen) ## net injected power in p.u. ## ----- evaluate constraints ----- ## reconstruct V Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] V = Vm * exp(1j * Va) ## evaluate power flow equations mis = V * conj(Ybus * V) - Sbus ##----- evaluate constraint function values ----- ## first, the equality constraints (power flow) g = r_[mis.real, ## active power mismatch for all buses mis.imag] ## reactive power mismatch for all buses ## then, the inequality constraints (branch flow limits) if nl2 > 0: flow_max = (branch[il, RATE_A] / baseMVA)**2 flow_max[flow_max == 0] = Inf if ppopt['OPF_FLOW_LIM'] == 2: ## current magnitude limit, |I| If = Yf * V It = Yt * V h = r_[If * conj(If) - flow_max, ## branch I limits (from bus) It * conj(It) - flow_max].real ## branch I limits (to bus) else: ## compute branch power flows ## complex power injected at "from" bus (p.u.) Sf = V[branch[il, F_BUS].astype(int)] * conj(Yf * V) ## complex power injected at "to" bus (p.u.) St = V[branch[il, T_BUS].astype(int)] * conj(Yt * V) if ppopt['OPF_FLOW_LIM'] == 1: ## active power limit, P (Pan Wei) h = r_[Sf.real**2 - flow_max, ## branch P limits (from bus) St.real**2 - flow_max] ## branch P limits (to bus) else: ## apparent power limit, |S| h = r_[Sf * conj(Sf) - flow_max, ## branch S limits (from bus) St * conj(St) - flow_max].real ## branch S limits (to bus) else: h = zeros((0, 1)) ##----- evaluate partials of constraints ----- ## index ranges iVa = arange(vv["i1"]["Va"], vv["iN"]["Va"]) iVm = arange(vv["i1"]["Vm"], vv["iN"]["Vm"]) iPg = arange(vv["i1"]["Pg"], vv["iN"]["Pg"]) iQg = arange(vv["i1"]["Qg"], vv["iN"]["Qg"]) iVaVmPgQg = r_[iVa, iVm, iPg, iQg].T ## compute partials of injected bus powers dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus, V) ## w.r.t. V ## Pbus w.r.t. Pg, Qbus w.r.t. Qg neg_Cg = sparse((-ones(ng), (gen[:, GEN_BUS], range(ng))), (nb, ng)) ## construct Jacobian of equality constraints (power flow) and transpose it dg = lil_matrix((2 * nb, nxyz)) blank = sparse((nb, ng)) dg[:, iVaVmPgQg] = vstack( [ ## P mismatch w.r.t Va, Vm, Pg, Qg hstack([dSbus_dVa.real, dSbus_dVm.real, neg_Cg, blank]), ## Q mismatch w.r.t Va, Vm, Pg, Qg hstack([dSbus_dVa.imag, dSbus_dVm.imag, blank, neg_Cg]) ], "csr") dg = dg.T if nl2 > 0: ## compute partials of Flows w.r.t. V if ppopt['OPF_FLOW_LIM'] == 2: ## current dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft = \ dIbr_dV(branch[il, :], Yf, Yt, V) else: ## power dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft = \ dSbr_dV(branch[il, :], Yf, Yt, V) if ppopt['OPF_FLOW_LIM'] == 1: ## real part of flow (active power) dFf_dVa = dFf_dVa.real dFf_dVm = dFf_dVm.real dFt_dVa = dFt_dVa.real dFt_dVm = dFt_dVm.real Ff = Ff.real Ft = Ft.real ## squared magnitude of flow (of complex power or current, or real power) df_dVa, df_dVm, dt_dVa, dt_dVm = \ dAbr_dV(dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft) ## construct Jacobian of inequality constraints (branch limits) ## and transpose it. dh = lil_matrix((2 * nl2, nxyz)) dh[:, r_[iVa, iVm].T] = vstack( [ hstack([df_dVa, df_dVm]), ## "from" flow limit hstack([dt_dVa, dt_dVm]) ## "to" flow limit ], "csr") dh = dh.T else: dh = None return h, g, dh, dg
def opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il=None, cost_mult=1.0): """Evaluates Hessian of Lagrangian for AC OPF. Hessian evaluation function for AC optimal power flow, suitable for use with L{pips}. Examples:: Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il, cost_mult) @param x: optimization vector @param lmbda: C{eqnonlin} - Lagrange multipliers on power balance equations. C{ineqnonlin} - Kuhn-Tucker multipliers on constrained branch flows. @param om: OPF model object @param Ybus: bus admittance matrix @param Yf: admittance matrix for "from" end of constrained branches @param Yt: admittance matrix for "to" end of constrained branches @param ppopt: PYPOWER options vector @param il: (optional) vector of branch indices corresponding to branches with flow limits (all others are assumed to be unconstrained). The default is C{range(nl)} (all branches). C{Yf} and C{Yt} contain only the rows corresponding to C{il}. @param cost_mult: (optional) Scale factor to be applied to the cost (default = 1). @return: Hessian of the Lagrangian. @see: L{opf_costfcn}, L{opf_consfcn} @author: Ray Zimmerman (PSERC Cornell) @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Richard Lincoln """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch, gencost = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"] cp = om.get_cost_params() N, Cw, H, dd, rh, kk, mm = \ cp["N"], cp["Cw"], cp["H"], cp["dd"], cp["rh"], cp["kk"], cp["mm"] vv, _, _, _ = om.get_idx() ## unpack needed parameters nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ng = gen.shape[0] ## number of dispatchable injections nxyz = len(x) ## total number of control vars of all types ## set default constrained lines if il is None: il = arange(nl) ## all lines have limits by default nl2 = len(il) ## number of constrained lines ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ## put Pg & Qg back in gen gen[:, PG] = Pg * baseMVA ## active generation in MW gen[:, QG] = Qg * baseMVA ## reactive generation in MVAr ## reconstruct V Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] V = Vm * exp(1j * Va) nxtra = nxyz - 2 * nb pcost = gencost[arange(ng), :] if gencost.shape[0] > ng: qcost = gencost[arange(ng, 2 * ng), :] else: qcost = array([]) ## ----- evaluate d2f ----- d2f_dPg2 = zeros(ng)#sparse((ng, 1)) ## w.r.t. p.u. Pg d2f_dQg2 = zeros(ng)#sparse((ng, 1)) ## w.r.t. p.u. Qg ipolp = find(pcost[:, MODEL] == POLYNOMIAL) d2f_dPg2[ipolp] = \ baseMVA**2 * polycost(pcost[ipolp, :], Pg[ipolp] * baseMVA, 2) if any(qcost): ## Qg is not free ipolq = find(qcost[:, MODEL] == POLYNOMIAL) d2f_dQg2[ipolq] = \ baseMVA**2 * polycost(qcost[ipolq, :], Qg[ipolq] * baseMVA, 2) i = r_[arange(vv["i1"]["Pg"], vv["iN"]["Pg"]), arange(vv["i1"]["Qg"], vv["iN"]["Qg"])] # d2f = sparse((vstack([d2f_dPg2, d2f_dQg2]).toarray().flatten(), # (i, i)), shape=(nxyz, nxyz)) d2f = sparse((r_[d2f_dPg2, d2f_dQg2], (i, i)), (nxyz, nxyz)) ## generalized cost if issparse(N) and N.nnz > 0: nw = N.shape[0] r = N * x - rh ## Nx - rhat iLT = find(r < -kk) ## below dead zone iEQ = find((r == 0) & (kk == 0)) ## dead zone doesn't exist iGT = find(r > kk) ## above dead zone iND = r_[iLT, iEQ, iGT] ## rows that are Not in the Dead region iL = find(dd == 1) ## rows using linear function iQ = find(dd == 2) ## rows using quadratic function LL = sparse((ones(len(iL)), (iL, iL)), (nw, nw)) QQ = sparse((ones(len(iQ)), (iQ, iQ)), (nw, nw)) kbar = sparse((r_[ones(len(iLT)), zeros(len(iEQ)), -ones(len(iGT))], (iND, iND)), (nw, nw)) * kk rr = r + kbar ## apply non-dead zone shift M = sparse((mm[iND], (iND, iND)), (nw, nw)) ## dead zone or scale diagrr = sparse((rr, (arange(nw), arange(nw))), (nw, nw)) ## linear rows multiplied by rr(i), quadratic rows by rr(i)^2 w = M * (LL + QQ * diagrr) * rr HwC = H * w + Cw AA = N.T * M * (LL + 2 * QQ * diagrr) d2f = d2f + AA * H * AA.T + 2 * N.T * M * QQ * \ sparse((HwC, (arange(nw), arange(nw))), (nw, nw)) * N d2f = d2f * cost_mult ##----- evaluate Hessian of power balance constraints ----- nlam = len(lmbda["eqnonlin"]) / 2 lamP = lmbda["eqnonlin"][:nlam] lamQ = lmbda["eqnonlin"][nlam:nlam + nlam] Gpaa, Gpav, Gpva, Gpvv = d2Sbus_dV2(Ybus, V, lamP) Gqaa, Gqav, Gqva, Gqvv = d2Sbus_dV2(Ybus, V, lamQ) d2G = vstack([ hstack([ vstack([hstack([Gpaa, Gpav]), hstack([Gpva, Gpvv])]).real + vstack([hstack([Gqaa, Gqav]), hstack([Gqva, Gqvv])]).imag, sparse((2 * nb, nxtra))]), hstack([ sparse((nxtra, 2 * nb)), sparse((nxtra, nxtra)) ]) ], "csr") ##----- evaluate Hessian of flow constraints ----- nmu = len(lmbda["ineqnonlin"]) / 2 muF = lmbda["ineqnonlin"][:nmu] muT = lmbda["ineqnonlin"][nmu:nmu + nmu] if ppopt['OPF_FLOW_LIM'] == 2: ## current dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It = dIbr_dV(Yf, Yt, V) Hfaa, Hfav, Hfva, Hfvv = d2AIbr_dV2(dIf_dVa, dIf_dVm, If, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2AIbr_dV2(dIt_dVa, dIt_dVm, It, Yt, V, muT) else: f = branch[il, F_BUS].astype(int) ## list of "from" buses t = branch[il, T_BUS].astype(int) ## list of "to" buses ## connection matrix for line & from buses Cf = sparse((ones(nl2), (arange(nl2), f)), (nl2, nb)) ## connection matrix for line & to buses Ct = sparse((ones(nl2), (arange(nl2), t)), (nl2, nb)) dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = \ dSbr_dV(branch[il,:], Yf, Yt, V) if ppopt['OPF_FLOW_LIM'] == 1: ## real power Hfaa, Hfav, Hfva, Hfvv = d2ASbr_dV2(dSf_dVa.real, dSf_dVm.real, Sf.real, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2ASbr_dV2(dSt_dVa.real, dSt_dVm.real, St.real, Ct, Yt, V, muT) else: ## apparent power Hfaa, Hfav, Hfva, Hfvv = \ d2ASbr_dV2(dSf_dVa, dSf_dVm, Sf, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = \ d2ASbr_dV2(dSt_dVa, dSt_dVm, St, Ct, Yt, V, muT) d2H = vstack([ hstack([ vstack([hstack([Hfaa, Hfav]), hstack([Hfva, Hfvv])]) + vstack([hstack([Htaa, Htav]), hstack([Htva, Htvv])]), sparse((2 * nb, nxtra)) ]), hstack([ sparse((nxtra, 2 * nb)), sparse((nxtra, nxtra)) ]) ], "csr") ##----- do numerical check using (central) finite differences ----- if 0: nx = len(x) step = 1e-5 num_d2f = sparse((nx, nx)) num_d2G = sparse((nx, nx)) num_d2H = sparse((nx, nx)) for i in range(nx): xp = x xm = x xp[i] = x[i] + step / 2 xm[i] = x[i] - step / 2 # evaluate cost & gradients _, dfp = opf_costfcn(xp, om) _, dfm = opf_costfcn(xm, om) # evaluate constraints & gradients _, _, dHp, dGp = opf_consfcn(xp, om, Ybus, Yf, Yt, ppopt, il) _, _, dHm, dGm = opf_consfcn(xm, om, Ybus, Yf, Yt, ppopt, il) num_d2f[:, i] = cost_mult * (dfp - dfm) / step num_d2G[:, i] = (dGp - dGm) * lmbda["eqnonlin"] / step num_d2H[:, i] = (dHp - dHm) * lmbda["ineqnonlin"] / step d2f_err = max(max(abs(d2f - num_d2f))) d2G_err = max(max(abs(d2G - num_d2G))) d2H_err = max(max(abs(d2H - num_d2H))) if d2f_err > 1e-6: print 'Max difference in d2f: %g' % d2f_err if d2G_err > 1e-5: print 'Max difference in d2G: %g' % d2G_err if d2H_err > 1e-6: print 'Max difference in d2H: %g' % d2H_err return d2f + d2G + d2H