def computestep1Local():
    global serializedData, dataFromStep1ForStep3

    # Initialize FileDataSource to retrieve the input data from a .csv file
    dataSource = FileDataSource(datasetFileNames[rankId],
                                DataSourceIface.doAllocateNumericTable,
                                DataSourceIface.doDictionaryFromContext)

    # Retrieve the input data
    dataSource.loadDataBlock()

    # Create an algorithm to compute SVD on local nodes
    algorithm = svd.Distributed(step1Local)

    algorithm.input.set(svd.data, dataSource.getNumericTable())

    # Compute SVD
    # OnlinePartialResult class from svd
    pres = algorithm.compute()

    dataFromStep1ForStep2 = pres.get(svd.outputOfStep1ForStep2)
    dataFromStep1ForStep3 = pres.get(svd.outputOfStep1ForStep3)

    # Serialize partial results required by step 2
    dataArch = InputDataArchive()
    dataFromStep1ForStep2.serialize(dataArch)

    nodeResults = dataArch.getArchiveAsArray()

    # Transfer partial results to step 2 on the root node
    serializedData = comm.gather(nodeResults)
Exemple #2
0
def trainModel():
    global trainingResult

    # Retrieve the input data from a .csv file
    trainDataTable = createSparseTable(trainDatasetFileNames[rankId])

    # Initialize FileDataSource to retrieve the input data from a .csv file
    trainLabelsSource = FileDataSource(trainGroundTruthFileNames[rankId],
                                       DataSourceIface.doAllocateNumericTable,
                                       DataSourceIface.doDictionaryFromContext)

    # Retrieve the data from input files
    trainLabelsSource.loadDataBlock()

    # Create an algorithm object to train the Naive Bayes model based on the local-node data
    localAlgorithm = training.Distributed(step1Local,
                                          nClasses,
                                          method=training.fastCSR)

    # Pass a training data set and dependent values to the algorithm
    localAlgorithm.input.set(classifier.training.data, trainDataTable)
    localAlgorithm.input.set(classifier.training.labels,
                             trainLabelsSource.getNumericTable())

    # Train the Naive Bayes model on local nodes
    pres = localAlgorithm.compute()

    # Serialize partial results required by step 2
    dataArch = InputDataArchive()
    pres.serialize(dataArch)

    nodeResults = dataArch.getArchiveAsArray()

    # Transfer partial results to step 2 on the root node
    serializedData = comm.gather(nodeResults)

    if rankId == MPI_ROOT:
        # Create an algorithm object to build the final Naive Bayes model on the master node
        masterAlgorithm = training.Distributed(step2Master,
                                               nClasses,
                                               method=training.fastCSR)

        for i in range(nBlocks):
            # Deserialize partial results from step 1
            dataArch = OutputDataArchive(serializedData[i])

            dataForStep2FromStep1 = training.PartialResult()
            dataForStep2FromStep1.deserialize(dataArch)

            # Set the local Naive Bayes model as input for the master-node algorithm
            masterAlgorithm.input.add(training.partialModels,
                                      dataForStep2FromStep1)

        # Merge and finalizeCompute the Naive Bayes model on the master node
        masterAlgorithm.compute()
        trainingResult = masterAlgorithm.finalizeCompute()
Exemple #3
0
def trainModel():
    global trainingResult
    masterAlgorithm = training.Distributed_Step2MasterFloat64NormEqDense()

    for filenameIndex in range(rankId, len(trainDatasetFileNames), comm_size):
        trainDataSource = FileDataSource(
            trainDatasetFileNames[filenameIndex],
            DataSourceIface.notAllocateNumericTable,
            DataSourceIface.doDictionaryFromContext)
        trainData = HomogenNumericTable(nFeatures, 0,
                                        NumericTableIface.notAllocate)
        trainDependentVariables = HomogenNumericTable(
            nDependentVariables, 0, NumericTableIface.notAllocate)
        mergedData = MergedNumericTable(trainData, trainDependentVariables)
        trainDataSource.loadDataBlock(mergedData)

        localAlgorithm = training.Distributed_Step1LocalFloat64NormEqDense()
        localAlgorithm.input.set(training.data, trainData)
        localAlgorithm.input.set(training.dependentVariables,
                                 trainDependentVariables)
        pres = localAlgorithm.compute()
        masterAlgorithm.input.add(training.partialModels, pres)

        mergedData.freeDataMemory()
        trainData.freeDataMemory()
        trainDependentVariables.freeDataMemory()

    pres = masterAlgorithm.compute()
    dataArch = InputDataArchive()
    pres.serialize(dataArch)
    nodeResults = dataArch.getArchiveAsArray()
    serializedData = comm.gather(nodeResults)

    if rankId == MPI_ROOT:
        print("Number of processes is %d." % (len(serializedData)))
        masterAlgorithm = training.Distributed_Step2MasterFloat64NormEqDense()

        for i in range(comm_size):
            dataArch = OutputDataArchive(serializedData[i])
            dataForStep2FromStep1 = training.PartialResult()
            dataForStep2FromStep1.deserialize(dataArch)
            masterAlgorithm.input.add(training.partialModels,
                                      dataForStep2FromStep1)
        masterAlgorithm.compute()
        trainingResult = masterAlgorithm.finalizeCompute()
Exemple #4
0
def trainModel():
    global trainingResult
    nodeResults = []
    # Create an algorithm object to build the final Naive Bayes model on the master node
    masterAlgorithm = training.Distributed_Step2MasterFloat64DefaultDense(nClasses)
    for filenameIndex in range(rankId, len(trainDatasetFileNames), comm_size):
        # Initialize FileDataSource to retrieve the input data from a .csv file
        #print("The worker with rank %d will read %s." % (rankId, trainDatasetFileNames[filenameIndex]))
        trainDataSource = FileDataSource(trainDatasetFileNames[filenameIndex],
                                         DataSourceIface.notAllocateNumericTable,
                                         DataSourceIface.doDictionaryFromContext)

        # Create Numeric Tables for training data and labels
        trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate)
        trainDependentVariables = HomogenNumericTable(1, 0, NumericTableIface.notAllocate)
        mergedData = MergedNumericTable(trainData, trainDependentVariables)

        # Retrieve the data from the input file
        trainDataSource.loadDataBlock(mergedData)

        # Create an algorithm object to train the Naive Bayes model based on the local-node data
        localAlgorithm = training.Distributed_Step1LocalFloat64DefaultDense(nClasses)

        # Pass a training data set and dependent values to the algorithm
        localAlgorithm.input.set(classifier.training.data, trainData)
        localAlgorithm.input.set(classifier.training.labels, trainDependentVariables)

        # Train the Naive Bayes model on local nodes
        pres = localAlgorithm.compute()
        # Serialize partial results required by step 2
        dataArch = InputDataArchive()
        pres.serialize(dataArch)

        masterAlgorithm.input.add(classifier.training.partialModels, pres)
        """
        nodeResults.append(dataArch.getArchiveAsArray().copy())
        localAlgorithm.clean()
        """
        mergedData.freeDataMemory()
        trainData.freeDataMemory()
        trainDependentVariables.freeDataMemory()
    # Transfer partial results to step 2 on the root node
    pres = masterAlgorithm.compute()
    dataArch = InputDataArchive()
    pres.serialize(dataArch)
    nodeResults.append(dataArch.getArchiveAsArray().copy())
    serializedData = comm.gather(nodeResults)

    if rankId == MPI_ROOT:
        # Create an algorithm object to build the final Naive Bayes model on the master node
        masterAlgorithm = training.Distributed_Step2MasterFloat64DefaultDense(nClasses)

        for currentRank in range(len(serializedData)):
            for currentBlock in range(0, len(serializedData[currentRank])):
                # Deserialize partial results from step 1
                dataArch = OutputDataArchive(serializedData[currentRank][currentBlock])

                dataForStep2FromStep1 = classifier.training.PartialResult()
                dataForStep2FromStep1.deserialize(dataArch)

                # Set the local Naive Bayes model as input for the master-node algorithm
                masterAlgorithm.input.add(classifier.training.partialModels, dataForStep2FromStep1)

        # Merge and finalizeCompute the Naive Bayes model on the master node
        masterAlgorithm.compute()
        trainingResult = masterAlgorithm.finalizeCompute()
def trainModel(comm, rankId):

    trainingResult = None

    # Initialize FileDataSource to retrieve the input data from a .csv file
    trainDataSource = FileDataSource(trainDatasetFileNames[rankId],
                                     DataSourceIface.notAllocateNumericTable,
                                     DataSourceIface.doDictionaryFromContext)

    # Create Numeric Tables for training data and labels
    trainData = HomogenNumericTable(NUM_FEATURES, 0,
                                    NumericTableIface.doNotAllocate)
    trainDependentVariables = HomogenNumericTable(
        NUM_DEPENDENT_VARS, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(trainData, trainDependentVariables)

    # Retrieve the data from the input file
    trainDataSource.loadDataBlock(mergedData)

    # Create an algorithm object to train the ridge regression model based on the local-node data
    localAlgorithm = training.Distributed(step1Local)

    # Pass a training data set and dependent values to the algorithm
    localAlgorithm.input.set(training.data, trainData)
    localAlgorithm.input.set(training.dependentVariables,
                             trainDependentVariables)

    # Train the ridge regression model on local nodes
    pres = localAlgorithm.compute()

    # Serialize partial results required by step 2
    dataArch = InputDataArchive()
    pres.serialize(dataArch)

    # Transfer partial results to step 2 on the root node
    nodeResults = dataArch.getArchiveAsArray()

    serializedData = comm.gather(nodeResults)

    if rankId == MPI_ROOT:

        # Create an algorithm object to build the final ridge regression model on the master node
        masterAlgorithm = training.Distributed(step2Master)

        for i in range(NUM_BLOCKS):

            # Deserialize partial results from step 1
            dataArch = OutputDataArchive(serializedData[i])
            dataForStep2FromStep1 = training.PartialResult()
            dataForStep2FromStep1.deserialize(dataArch)

            # Set the local ridge regression model as input for the master-node algorithm
            masterAlgorithm.input.add(training.partialModels,
                                      dataForStep2FromStep1)

        # Merge and finalizeCompute the ridge regression model on the master node
        masterAlgorithm.compute()
        trainingResult = masterAlgorithm.finalizeCompute()

        # Retrieve the algorithm results
        printNumericTable(
            trainingResult.get(training.model).getBeta(),
            "Ridge Regression coefficients:")

    return trainingResult
Exemple #6
0
    # Create an algorithm to compute a variance-covariance matrix on local nodes
    localAlgorithm = covariance.Distributed(step1Local)

    # Set the input data set to the algorithm
    localAlgorithm.input.set(covariance.data, dataSource.getNumericTable())

    # Compute a variance-covariance matrix
    pres = localAlgorithm.compute()

    # Serialize partial results required by step 2
    dataArch = InputDataArchive()

    pres.serialize(dataArch)
    perNodeArchLength = dataArch.getSizeOfArchive()

    nodeResults = dataArch.getArchiveAsArray()

    # Transfer partial results to step 2 on the root node
    data = comm_size.gather(nodeResults, MPI_ROOT)

    if rankId == MPI_ROOT:

        # Create an algorithm to compute a variance-covariance matrix on the master node
        masterAlgorithm = covariance.Distributed(step2Master)

        for i in range(nBlocks):

            # Deserialize partial results from step 1
            dataArch = OutputDataArchive(data[i])

            dataForStep2FromStep1 = covariance.PartialResult()