# Get the current properties for rent in Dublin that are between 1000 and 1500 per month.

from daftlistings import Daft, RentType

daft = Daft()

daft.set_county("Dublin City")
daft.set_listing_type(RentType.APARTMENTS)
daft.set_min_price(1000)
daft.set_max_price(1500)
daft.set_furnished(True)
daft.set_keywords(['quiet'])

listings = daft.search()

for listing in listings:
    print(listing.formalised_address)
    facilities = listing.facilities
    if facilities is not None:
        print('Facilities: ')

        for facility in facilities:
            print(facility)

    features = listing.features
    if features is not None:
        print('Features: ')
        for feature in features:
            print(feature)

    print("")
from daftlistings import Daft, RentType, RoomType, Gender

daft = Daft()
daft.set_listing_type(RentType.ROOMS_TO_SHARE)
daft.set_room_type(RoomType.DOUBLE)
daft.set_furnished(True)
daft.set_county('Dublin City')
daft.set_area('Castleknock')
daft.set_gender(Gender.MALE)
daft.set_with_photos(True)

listings = daft.search()

for listing in listings:
    print(listing.get_price)
    print(listing.formalised_address)
    print(listing.daft_link)
    print(listing.contact_number)
    print(' ')
Exemple #3
0
from daftlistings import Daft, SaleType, HouseType, SortType
import statsmodels.api as sm
import pandas as pd
import numpy as np
from IPython.display import HTML

daft = Daft()

county = "Dublin"
areas = ["Dublin 15", "Dublin 7"]
#areas = ["Ashtown"]

daft.set_listing_type(SaleType.HOUSES)
daft.set_house_type(HouseType.DETACHED)
daft.set_area(areas)
daft.set_county(county)
daft.set_sort_by(SortType.PRICE)

df = pd.DataFrame()

listings = daft.search()

for listing in listings:
    #     print(listing)
    try:

        data = pd.DataFrame([
            listing.price, listing.bedrooms, listing.bathrooms,
            listing.dwelling_type, listing.ber_code, listing.floor_area,
            listing.town, listing.county, listing.daft_link
        ]).T
 def test_area_commercial_properties(self):
     daft = Daft()
     daft.set_county("Dublin City")
     daft.set_listing_type(SaleType.COMMERCIAL)
     listings = daft.search()
     self.assertTrue(len(listings) > 0)
from daftlistings import Daft, SaleType
import csv

offset = 0
pages = True
daft_data = []

#Check the fastest way to write a list into csv format!
# while pages:

#for pages in range(1):
while pages:
    daft = Daft()
    daft.set_county('Dublin')
    #daft.set_area([])
    daft.set_listing_type(SaleType.PROPERTIES)
    daft.set_offset(offset)

    listings = daft.get_listings()

    if not listings:
        pages = False

    for listing in listings:
        link = listing.get_daft_link()
        county = listing.get_county()
        town = listing.get_town()
        address = listing.get_formalised_address()
        price = listing.get_price()
        dwelling_type = listing.get_dwelling_type()
        bedrooms = listing.get_num_bedrooms()