def inputs(self): return { "pathTocontentMeta": File_Txt(self.node.inputs[0]), "pathTotaxonomy": Pandas_Dataframe(self.node.inputs[1]), "root_path": File_Txt(self.node.inputs[2]), "path_to_corpus": File_Txt(self.node.inputs[3]) }
def inputs(self): return { "localpathTocontentMeta": ReadDaggitTask_Folderpath(self.node.inputs[0]), "pathTotaxonomy": Pandas_Dataframe(self.node.inputs[1]), "root_path": File_Txt(self.node.inputs[2]), "path_to_corpus": File_Txt(self.node.inputs[3]) }
def inputs(self): return { "timestamp_folder": File_Txt(self.node.inputs[0]), "pathTocredentials": ReadDaggitTask_Folderpath(self.node.inputs[1]), "categoryLookup": ReadDaggitTask_Folderpath(self.node.inputs[2]) }
def outputs(self): return { "model": File_Txt(self.node.outputs[0]), "model_weights": Pickle_Obj(self.node.outputs[1]), "predictions": Pandas_Dataframe(self.node.outputs[2]), "report": Pickle_Obj(self.node.outputs[3]), }
def inputs(self): return { "pathTotaxonomy": Pandas_Dataframe(self.node.inputs[0]), "categoryLookup": ReadDaggitTask_Folderpath(self.node.inputs[1]), "timestamp_folder": File_Txt(self.node.inputs[2]), "pathTocredentials": ReadDaggitTask_Folderpath(self.node.inputs[3]) }
def outputs(self): """ Function that the ContentToTextRead operator defines while returning graph outputs :returns: Returns the path to timestamp folder in which auto tagging results get generated """ return {"timestamp_folder": File_Txt(self.node.outputs[0])}
def outputs(self): """ Function that the OcrTextExtraction operator defines while returning graph outputs :returns: Returns the path to the folder in which text extraction results get generated """ return {"path_to_result_folder": File_Txt(self.node.outputs[0])}
def outputs(self): return { "path_to_timestampFolder": File_Txt(self.node.outputs[0]), "path_to_distMeasure": File_Txt(self.node.outputs[1]), "path_to_domain_level": File_Txt(self.node.outputs[2]) }
def inputs(self): return {"path_to_timestampFolder": File_Txt(self.node.inputs[0])}
def outputs(self): return { "root_path": File_Txt(self.node.outputs[0]), "path_to_corpus": File_Txt(self.node.outputs[1]) }
def outputs(self): return {"cross_tabs": File_Txt(self.node.outputs[0])}
def outputs(self): return {"pathTocontentMeta": File_Txt(self.node.outputs[0])}
def inputs(self): return { "pathTotaxonomy": Pandas_Dataframe(self.node.inputs[0]), "path_to_contentKeywords": File_Txt(self.node.inputs[1]) }
def outputs(self): return { "metrics": File_Txt(self.node.outputs[0]), "topk_predictions": Pandas_Dataframe(self.node.outputs[1]), "result_df": Pandas_Dataframe(self.node.outputs[2]) }
def inputs(self): return { "path_to_timestampFolder": File_Txt(self.node.inputs[0]), "path_to_observedtag": File_Txt(self.node.inputs[1]), "path_to_predictedtag": File_Txt(self.node.inputs[2]) }
def outputs(self): return {"path_to_predictedTags": File_Txt(self.node.outputs[0])}
def inputs(self): return { "pathTocredentials": ReadDaggitTask_Folderpath(self.node.inputs[0]), "pathTocontentMeta": File_Txt(self.node.inputs[1]) }
def outputs(self): return { "path_to_agg_precision": File_Txt(self.node.outputs[0]), "path_to_nonagg_precision": File_Txt(self.node.outputs[1]) }
def inputs(self): return { "pathTocontentMeta": File_Txt(self.node.inputs[0]), "pathTotaxonomy": Pandas_Dataframe(self.node.inputs[1]), "path_to_timestampFolder": File_Txt(self.node.inputs[2]) }
def inputs(self): return {"timestamp_folder": File_Txt(self.node.inputs[0])}
def outputs(self): return { "report": File_Txt(self.node.outputs[0]), "model": Pickle_Obj(self.node.outputs[1]) }
def inputs(self): return {"path_to_contentKeywords": File_Txt(self.node.inputs[0])}