def never_no_config_sensor(_): return SkipReason("never")
def _wrapped_fn(context: SensorEvaluationContext): # initiate the cursor to (most recent event id, current timestamp) when: # * it's the first time starting the sensor # * or, the cursor isn't in valid format (backcompt) if context.cursor is None or not RunStatusSensorCursor.is_valid(context.cursor): most_recent_event_records = list( context.instance.get_event_records(ascending=False, limit=1) ) most_recent_event_id = ( most_recent_event_records[0].storage_id if len(most_recent_event_records) == 1 else -1 ) new_cursor = RunStatusSensorCursor( update_timestamp=pendulum.now("UTC").isoformat(), record_id=most_recent_event_id, ) context.update_cursor(new_cursor.to_json()) yield SkipReason(f"Initiating {name}. Set cursor to {new_cursor}") return record_id, update_timestamp = RunStatusSensorCursor.from_json(context.cursor) # Fetch events after the cursor id # * we move the cursor forward to the latest visited event's id to avoid revisits # * when the daemon is down, bc we persist the cursor info, we can go back to where we # left and backfill alerts for the qualified events (up to 5 at a time) during the downtime # Note: this is a cross-run query which requires extra handling in sqlite, see details in SqliteEventLogStorage. event_records = context.instance.get_event_records( EventRecordsFilter( after_cursor=RunShardedEventsCursor( id=record_id, run_updated_after=cast(datetime, pendulum.parse(update_timestamp)), ), event_type=PIPELINE_RUN_STATUS_TO_EVENT_TYPE[pipeline_run_status], ), ascending=True, limit=5, ) for event_record in event_records: event_log_entry = event_record.event_log_entry storage_id = event_record.storage_id # get run info run_records = context.instance.get_run_records( filters=RunsFilter(run_ids=[event_log_entry.run_id]) ) # skip if we couldn't find the right run if len(run_records) != 1: # bc we couldn't find the run, we use the event timestamp as the approximate # run update timestamp approximate_update_timestamp = utc_datetime_from_timestamp( event_log_entry.timestamp ) context.update_cursor( RunStatusSensorCursor( record_id=storage_id, update_timestamp=approximate_update_timestamp.isoformat(), ).to_json() ) continue pipeline_run = run_records[0].pipeline_run update_timestamp = run_records[0].update_timestamp # skip if any of of the followings happens: if ( # the pipeline does not have a repository (manually executed) not pipeline_run.external_pipeline_origin or # the pipeline does not belong to the current repository pipeline_run.external_pipeline_origin.external_repository_origin.repository_name != context.repository_name or # if pipeline is not selected (pipeline_selection and pipeline_run.pipeline_name not in pipeline_selection) or # if job not selected ( job_selection and pipeline_run.pipeline_name not in map(lambda x: x.name, job_selection) ) ): context.update_cursor( RunStatusSensorCursor( record_id=storage_id, update_timestamp=update_timestamp.isoformat() ).to_json() ) continue serializable_error = None try: with user_code_error_boundary( RunStatusSensorExecutionError, lambda: f'Error occurred during the execution sensor "{name}".', ): # one user code invocation maps to one failure event run_status_sensor_fn( RunStatusSensorContext( sensor_name=name, dagster_run=pipeline_run, dagster_event=event_log_entry.dagster_event, instance=context.instance, ) ) except RunStatusSensorExecutionError as run_status_sensor_execution_error: # When the user code errors, we report error to the sensor tick not the original run. serializable_error = serializable_error_info_from_exc_info( run_status_sensor_execution_error.original_exc_info ) context.update_cursor( RunStatusSensorCursor( record_id=storage_id, update_timestamp=update_timestamp.isoformat() ).to_json() ) # Yield PipelineRunReaction to indicate the execution success/failure. # The sensor machinery would # * report back to the original run if success # * update cursor and job state yield PipelineRunReaction( pipeline_run=pipeline_run, run_status=pipeline_run_status, error=serializable_error, )