def bert_sent_benchmark():
    model = load_bert_tone_model()       

    start = time.time()
    preds = df_val.text.map(lambda x: model.predict(x))
    print_speed_performance(start, len(df_val))
    spellings_map = {'subjective': 'subjektivt', 'objective': 'objektivt', 'positive': 'positiv', 'negative': 'negativ', 'neutral': 'neutral'}
    df_val['bert_ana'] = preds.map(lambda x: spellings_map[x['analytic']])
    df_val['bert_pol'] = preds.map(lambda x: spellings_map[x['polarity']])

    f1_report(df_val['polarity'], df_val['bert_pol'], 'BERT_Tone (polarity)',  "twitter_sentiment(val)")
    f1_report(df_val['sub/obj'], df_val['bert_ana'], 'BERT_Tone (sub/obj)',  "twitter_sentiment(val)")
Exemple #2
0
def bert_sent_benchmark(datasets):
    model = load_bert_tone_model()

    for dataset in datasets:
        if dataset == 'euparlsent':
            data = EuroparlSentiment1()
        if dataset == 'lccsent':
            data = LccSentiment()

        df = data.load_with_pandas()

        df['valence'] = df['valence'].map(to_label)
        # predict with bert sentiment
        df['pred'] = df.text.map(
            lambda x: model.predict(x, analytic=False)['polarity'])

        report(df['valence'], df['pred'], 'BERT_Tone (polarity)', dataset)
Exemple #3
0
    def __init__(self, hisia=True):
        try:
            from afinn import Afinn
            self.afinn = Afinn(language='da')
        except:
            print('afinn not installed')
            self.afinn = False
        try:
            from sentida import Sentida
            self.sent = Sentida()
        except:
            print('sentida not loading')
            self.sent = False
        try:
            from danlp.models import load_bert_emotion_model
            self.classifier = load_bert_emotion_model()
        except:
            self.classifier = False
            print('bert emotion not loading')

        try:
            from danlp.models import load_bert_tone_model
            self.classifier_tone = load_bert_tone_model()
        except:
            print('bert tone not working')
            self.classifier_tone = False
        try:
            from danlp.models import load_spacy_model
            self.nlp = load_spacy_model(
                textcat='sentiment', vectorError=True
            )  # if you got an error saying da.vectors not found, try setting vectorError=True - it is an temp fix
        except:
            print('spacy sentiment not working')
            self.nlp = False
        if hisia:
            try:
                from hisia import Hisia
                self.hisia = Hisia
            except:
                self.hisia = False
                print('hisia not working')
        else:
            self.hisia = False
Exemple #4
0
 def test_predictions(self):
     model = load_bert_tone_model()
     self.assertEqual(model.predict('han er 12 år', polarity=False), {
         'analytic': 'objective',
         'polarity': None
     })
     self.assertEqual(model.predict('han gør det godt', analytic=False), {
         'analytic': None,
         'polarity': 'positive'
     })
     self.assertEqual(model.predict('Det er super dårligt'), {
         'analytic': 'subjective',
         'polarity': 'negative'
     })
     self.assertEqual(model._classes()[0],
                      ['positive', 'neutral', 'negative'])
     self.assertTrue(
         len(
             model.predict_proba('jeg er meget glad idag', polarity=False)
             [0]) == 2)
def bert_sent_benchmark(datasets):
    model = load_bert_tone_model()
    
    for dataset in datasets:
        if dataset == 'euparlsent':
            data = EuroparlSentiment1()
        if dataset == 'lccsent':
            data = LccSentiment()

        df = data.load_with_pandas()


        df['valence'] = df['valence'].map(sentiment_score_to_label)
        # predict with bert sentiment 
        start = time.time()
        df['pred'] = df.text.map(lambda x: model.predict(x, analytic=False)['polarity'])
        print_speed_performance(start, len(df))
        spellings_map = {'subjective': 'subjektivt', 'objective': 'objektivt', 'positive': 'positiv', 'negative': 'negativ', 'neutral': 'neutral'}
        df['pred'] = df['pred'].map(lambda x: spellings_map[x])

        f1_report(df['valence'], df['pred'], 'BERT_Tone (polarity)', dataset)
Exemple #6
0
    def __get_sent_danlp_bert_tone(texts, tokenlist):
        from danlp.models import load_bert_tone_model

        classifier = load_bert_tone_model()

        def get_proba(txt):
            res = classifier.predict_proba(txt)
            polarity, analytic = res
            pos, neu, neg = polarity
            obj, subj = analytic
            return pos, neu, neg, obj, subj

        return pd.DataFrame(
            [get_proba(txt) for txt in texts],
            columns=[
                "polarity_pos",
                "polarity_neu",
                "polarity_neg",
                "analytic_obj",
                "analytic_subj",
            ],
        )