Exemple #1
0
    def __init__(self, *args, **kwargs):
        """
        """
        # init DARCBase without logger, as we need a non-default logger
        super(ProcessorMasterManager, self).__init__(*args,
                                                     no_logger=True,
                                                     **kwargs)

        # initialize queue logger listener
        self.log_queue = mp.Queue()
        self.log_listener = get_queue_logger_listener(self.log_queue,
                                                      self.log_file)
        self.log_listener.start()

        # create queue logger
        self.logger = get_queue_logger(self.module_name, self.log_queue)

        self.observations = {}
        self.observation_end_times = {}
        self.observation_queues = {}

        self.scavenger = None
        self.status_generator = None

        # reduce logging from status check commands
        logging.getLogger('darc.control').setLevel(logging.ERROR)

        self.logger.info("{} initialized".format(self.log_name))
Exemple #2
0
    def __init__(self,
                 obs_config,
                 output_dir,
                 log_queue,
                 input_queue,
                 output_queue,
                 ncluster,
                 config_file=CONFIG_FILE,
                 obs_name=''):
        """
        :param dict obs_config: Observation settings
        :param str output_dir: Output directory for data products
        :param Queue log_queue: Queue to use for logging
        :param Queue input_queue: Input queue for triggers
        :param Queue output_queue: Output queue for clusters
        :param mp.Value ncluster: 0
        :param str config_file: Path to config file
        :param str obs_name: Observation name to use in log messages
        """
        super(Clustering, self).__init__()
        module_name = type(self).__module__.split('.')[-1]
        self.logger = get_queue_logger(module_name, log_queue)
        self.output_dir = output_dir
        self.obs_config = obs_config
        self.input_queue = input_queue
        self.output_queue = output_queue
        self.obs_name = obs_name

        # set system parameters
        dt = TSAMP.to(u.second).value
        chan_width = (BANDWIDTH / float(NCHAN)).to(u.MHz).value
        cent_freq = (self.obs_config['min_freq'] * u.MHz + 0.5 * BANDWIDTH).to(
            u.GHz).value
        self.sys_params = {
            'dt': dt,
            'delta_nu_MHz': chan_width,
            'nu_GHz': cent_freq
        }

        # load config
        self.config_file = config_file
        self.config = self._load_config()

        # create stop event
        self.stop_event = mp.Event()

        self.input_empty = False
        self.output_file_handle = None
        self.ncluster = ncluster
Exemple #3
0
    def __init__(self, log_queue, *args, **kwargs):
        """
        :param Queue log_queue: Queue to use for logging
        """
        # init DARCBase without logger, as we need a non-default logger
        super(Processor, self).__init__(*args, no_logger=True, **kwargs)

        # create queue logger
        self.logger = get_queue_logger(self.module_name, log_queue)
        self.log_queue = log_queue

        self.observation_running = False
        self.threads = {}
        self.amber_triggers = []
        self.hdr_mapping = {}
        self.obs_config = None
        self.output_dir = None
        self.reprocessing = False

        # create queues
        self.clustering_queue = mp.Queue()
        self.extractor_queue = mp.Queue()
        self.classifier_queue = mp.Queue()
        self.all_queues = (self.clustering_queue, self.extractor_queue,
                           self.classifier_queue)

        # lock for accessing AMBER trigger list and obs stats
        self.amber_lock = threading.Lock()
        self.obs_stats_lock = threading.Lock()

        # initalize observation statistics.
        self.obs_stats = {
            'ncand_raw': 0,
            'ncand_post_clustering': 0,
            'ncand_post_thresholds': 0,
            'ncand_post_classifier': 0
        }

        self.ncluster = mp.Value('i', 0)
        self.ncand_above_threshold = mp.Value('i', 0)

        self.candidates_to_visualize = []
        self.classifier_parent_conn, self.classifier_child_conn = mp.Pipe()

        self.obs_name = ''

        self.logger.info("{} initialized".format(self.log_name))
Exemple #4
0
    def __init__(self,
                 obs_config,
                 output_dir,
                 log_queue,
                 input_queue,
                 output_queue,
                 ncand_above_threshold,
                 config_file=CONFIG_FILE,
                 obs_name=''):
        """
        :param dict obs_config: Observation settings
        :param str output_dir: Output directory for data products
        :param Queue log_queue: Queue to use for logging
        :param Queue input_queue: Input queue for clusters
        :param Queue output_queue: Output queue for classifier
        :param mp.Value ncand_above_threshold: 0
        :param str config_file: Path to config file
        :param str obs_name: Observation name to use in log messages
        """
        super(Extractor, self).__init__()
        module_name = type(self).__module__.split('.')[-1]
        self.logger = get_queue_logger(module_name, log_queue)
        self.output_dir = os.path.join(output_dir, 'data')
        self.obs_config = obs_config
        self.input_queue = input_queue
        self.output_queue = output_queue
        self.obs_name = obs_name

        # load config
        self.config_file = config_file
        self.config = self._load_config()

        # create directory for output data
        util.makedirs(self.output_dir)

        # create stop event
        self.stop_event = mp.Event()

        self.input_empty = False
        self.filterbank_reader = None
        self.rfi_mask = np.array([], dtype=int)

        self.data = None
        self.data_dm_time = None
        self.ncand_above_threshold = ncand_above_threshold
Exemple #5
0
    def __init__(self, log_queue, *args, **kwargs):
        """
        :param Queue log_queue: Queue to use for logging
        """
        # init DARCBase without logger, as we need a non-default logger
        super(ProcessorMaster, self).__init__(*args, no_logger=True, **kwargs)

        # create queue logger
        self.logger = get_queue_logger(self.module_name, log_queue)

        # read result dir from worker processor config
        self.result_dir = self._get_result_dir()

        self.obs_config = None
        self.warnings_sent = []
        self.status = None
        self.process = None
        self.central_result_dir = None

        self.logger.info("{} initialized".format(self.log_name))
Exemple #6
0
    def __init__(self,
                 output_dir,
                 result_dir,
                 log_queue,
                 obs_config,
                 files,
                 config_file=CONFIG_FILE,
                 obs_name=''):
        """
        :param str output_dir: Output directory for data products
        :param str result_dir: central directory to copy output PDF to
        :param Queue log_queue: Queue to use for logging
        :param dict obs_config: Observations settings
        :param list files: HDF5 files to visualize
        :param str config_file: Path to config file
        :param str obs_name: Observation name to use in log messages
        """
        module_name = type(self).__module__.split('.')[-1]
        self.output_dir = output_dir
        self.result_dir = result_dir
        self.logger = get_queue_logger(module_name, log_queue)
        self.obs_config = obs_config
        self.files = np.array(files)
        self.obs_name = obs_name

        # load config
        self.config_file = config_file
        self.config = self._load_config()

        self.logger.info(f"{self.obs_name}Starting visualization")
        # switch the plot backend to pdf
        old_backend = plt.get_backend()
        plt.switch_backend('PDF')
        try:
            self._visualize()
        except Exception as e:
            self.logger.error(
                f"{self.obs_name}Visualization failed: {type(e)}: {e}")
        # put back the old backend
        plt.switch_backend(old_backend)
Exemple #7
0
    def __init__(self, *args, **kwargs):
        """
        """
        # init DARCBase without logger, as we need a non-default logger
        super(ProcessorManager, self).__init__(*args, no_logger=True, **kwargs)

        # initialize queue logger listener
        self.log_queue = mp.Queue()
        self.log_listener = get_queue_logger_listener(self.log_queue,
                                                      self.log_file)
        self.log_listener.start()

        # create queue logger
        self.logger = get_queue_logger(self.module_name, self.log_queue)

        self.observations = {}
        self.observation_end_times = {}
        self.observation_queues = {}
        self.current_observation_queue = None
        self.scavenger = None
        self.status_generator = None

        self.logger.info("{} initialized".format(self.log_name))
Exemple #8
0
    def __init__(self,
                 log_queue,
                 input_queue,
                 conn,
                 config_file=CONFIG_FILE,
                 obs_name=''):
        """
        :param Queue log_queue: Queue to use for logging
        :param Queue input_queue: Input queue for triggers
        :param Connection conn: Pipe connection to send output to
        :param str config_file: Path to config file
        :param str obs_name: Observation name to use in log messages
        """
        super(Classifier, self).__init__()
        module_name = type(self).__module__.split('.')[-1]
        self.logger = get_queue_logger(module_name, log_queue)
        self.input_queue = input_queue
        self.conn = conn
        self.obs_name = obs_name

        # load config
        self.config_file = config_file
        self.config = self._load_config()

        # create stop event
        self.stop_event = mp.Event()

        self.input_empty = False
        self.model_freqtime = None
        self.model_dmtime = None
        self.data_freqtime = None
        self.data_dmtime = None
        self.nfreq_data = None
        self.ndm_data = None
        self.ntime_data = None
        self.candidates_to_visualize = []
        self.tf = None