Exemple #1
0
def valid(datacfg, cfgfile, weightfile):
    def truths_length(truths):
        for i in range(50):
            if truths[i][1] == 0:
                return i

    # Parse data configuration files
    data_options = read_data_cfg(datacfg)
    valid_images = data_options['valid']
    meshname = data_options['mesh']
    name = data_options['name']
    im_width = int(data_options['im_width'])
    im_height = int(data_options['im_height'])
    fx = float(data_options['fx'])
    fy = float(data_options['fy'])
    u0 = float(data_options['u0'])
    v0 = float(data_options['v0'])

    # Parse net configuration file
    net_options = parse_cfg(cfgfile)[0]
    loss_options = parse_cfg(cfgfile)[-1]
    conf_thresh = float(net_options['conf_thresh'])
    num_keypoints = int(net_options['num_keypoints'])
    num_classes = int(loss_options['classes'])
    num_anchors = int(loss_options['num'])
    anchors = [float(anchor) for anchor in loss_options['anchors'].split(',')]

    # Read object model information, get 3D bounding box corners, get intrinsics
    mesh = MeshPly(meshname)
    vertices = np.c_[np.array(mesh.vertices),
                     np.ones((len(mesh.vertices), 1))].transpose()
    corners3D = get_3D_corners(vertices)
    diam = float(data_options['diam'])
    intrinsic_calibration = get_camera_intrinsic(u0, v0, fx,
                                                 fy)  # camera params

    # Network I/O params
    num_labels = 2 * num_keypoints + 3  # +2 for width, height, +1 for object class
    errs_2d = []  # to save
    with open(valid_images) as fp:  # validation file names
        tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]

    # Compute-related Parameters
    use_cuda = True  # whether to use cuda or no
    kwargs = {'num_workers': 4, 'pin_memory': True}  # number of workers etc.

    # Specicy model, load pretrained weights, pass to GPU and set the module in evaluation mode
    model = Darknet(cfgfile)
    model.load_weights(weightfile)
    model.cuda()
    model.eval()

    # Get the dataloader for the test dataset
    valid_dataset = dataset_multi.listDataset(valid_images,
                                              shape=(model.width,
                                                     model.height),
                                              shuffle=False,
                                              objclass=name,
                                              transform=transforms.Compose([
                                                  transforms.ToTensor(),
                                              ]))
    test_loader = torch.utils.data.DataLoader(valid_dataset,
                                              batch_size=1,
                                              shuffle=False,
                                              **kwargs)

    # Iterate through test batches (Batch size for test data is 1)
    logging('Testing {}...'.format(name))
    for batch_idx, (data, target) in enumerate(test_loader):

        t1 = time.time()
        # Pass data to GPU
        if use_cuda:
            data = data.cuda()
            # target = target.cuda()

        # Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
        data = Variable(data, volatile=True)
        t2 = time.time()

        # Forward pass
        output = model(data).data
        t3 = time.time()

        # Using confidence threshold, eliminate low-confidence predictions
        trgt = target[0].view(-1, num_labels)
        all_boxes = get_multi_region_boxes(output,
                                           conf_thresh,
                                           num_classes,
                                           num_keypoints,
                                           anchors,
                                           num_anchors,
                                           int(trgt[0][0]),
                                           only_objectness=0)
        t4 = time.time()

        # Iterate through all images in the batch
        for i in range(output.size(0)):

            # For each image, get all the predictions
            boxes = all_boxes[i]

            # For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
            truths = target[i].view(-1, num_labels)

            # Get how many object are present in the scene
            num_gts = truths_length(truths)

            # Iterate through each ground-truth object
            for k in range(num_gts):
                box_gt = list()
                for j in range(1, num_labels):
                    box_gt.append(truths[k][j])
                box_gt.extend([1.0, 1.0])
                box_gt.append(truths[k][0])

                # If the prediction has the highest confidence, choose it as our prediction
                best_conf_est = -sys.maxsize
                for j in range(len(boxes)):
                    if (boxes[j][2 * num_keypoints] >
                            best_conf_est) and (boxes[j][2 * num_keypoints + 2]
                                                == int(truths[k][0])):
                        best_conf_est = boxes[j][2 * num_keypoints]
                        box_pr = boxes[j]
                        match = corner_confidence(
                            box_gt[:2 * num_keypoints],
                            torch.FloatTensor(boxes[j][:2 * num_keypoints]))

                # Denormalize the corner predictions
                corners2D_gt = np.array(np.reshape(box_gt[:2 * num_keypoints],
                                                   [-1, 2]),
                                        dtype='float32')
                corners2D_pr = np.array(np.reshape(box_pr[:2 * num_keypoints],
                                                   [-1, 2]),
                                        dtype='float32')
                corners2D_gt[:, 0] = corners2D_gt[:, 0] * im_width
                corners2D_gt[:, 1] = corners2D_gt[:, 1] * im_height
                corners2D_pr[:, 0] = corners2D_pr[:, 0] * im_width
                corners2D_pr[:, 1] = corners2D_pr[:, 1] * im_height
                corners2D_gt_corrected = fix_corner_order(
                    corners2D_gt)  # Fix the order of corners

                # Compute [R|t] by pnp
                objpoints3D = np.array(np.transpose(
                    np.concatenate((np.zeros((3, 1)), corners3D[:3, :]),
                                   axis=1)),
                                       dtype='float32')
                K = np.array(intrinsic_calibration, dtype='float32')
                R_gt, t_gt = pnp(objpoints3D, corners2D_gt_corrected, K)
                R_pr, t_pr = pnp(objpoints3D, corners2D_pr, K)

                # Compute pixel error
                Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
                Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
                proj_2d_gt = compute_projection(vertices, Rt_gt,
                                                intrinsic_calibration)
                proj_2d_pred = compute_projection(vertices, Rt_pr,
                                                  intrinsic_calibration)
                proj_corners_gt = np.transpose(
                    compute_projection(corners3D, Rt_gt,
                                       intrinsic_calibration))
                proj_corners_pr = np.transpose(
                    compute_projection(corners3D, Rt_pr,
                                       intrinsic_calibration))
                norm = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
                pixel_dist = np.mean(norm)
                errs_2d.append(pixel_dist)

        t5 = time.time()

    # Compute 2D projection score
    eps = 1e-5
    for px_threshold in [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]:
        acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (
            len(errs_2d) + eps)
        # Print test statistics
        logging('   Acc using {} px 2D Projection = {:.2f}%'.format(
            px_threshold, acc))
Exemple #2
0
    #img = cv2.rectangle(img, (x1,y1), (x2,y2), rgb, 1)
    if savename:
        print("save plot results to %s" % savename)
        cv2.imwrite(savename, img)
    return img


if __name__ == '__main__':
    #datacfg = 'cfg/ape.data'
    modelcfg = 'multi_obj_pose_estimation/cfg/yolo-pose-multi.cfg'
    weightfile = '../Assets/trained/multi.weights'

    #模型初始化
    model = Darknet(modelcfg)
    model.load_weights(weightfile)
    model = model.cuda()
    model.eval()

    #加载模型用
    net_options = parse_cfg(modelcfg)[0]
    loss_options = parse_cfg(modelcfg)[-1]

    conf_thresh = float(net_options['conf_thresh'])
    num_keypoints = int(net_options['num_keypoints'])
    num_classes = int(loss_options['classes'])
    num_anchors = int(loss_options['num'])
    anchors = [float(anchor) for anchor in loss_options['anchors'].split(',')]
    test_width = 416
    test_height = 416

    datasetPath = '../Assets/DataSets/LINEMOD/'
Exemple #3
0
def valid(datacfg, cfgfile, weightfile, conf_th):
    def truths_length(truths):
        for i in range(50):
            if truths[i][1] == 0:
                return i

    # Parse configuration files
    options = read_data_cfg(datacfg)
    valid_images = options['valid']
    meshname = options['mesh']
    name = options['name']
    prefix = 'results'
    # Read object model information, get 3D bounding box corners
    mesh = MeshPly(meshname)
    vertices = np.c_[np.array(mesh.vertices),
                     np.ones((len(mesh.vertices), 1))].transpose()
    corners3D = get_3D_corners(vertices)
    diam = float(options['diam'])

    # Read intrinsic camera parameters
    internal_calibration = get_camera_intrinsic()

    # Get validation file names
    with open(valid_images) as fp:
        tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]

    # Specicy model, load pretrained weights, pass to GPU and set the module in evaluation mode
    model = Darknet(cfgfile)
    model.load_weights(weightfile)
    model.cuda()
    model.eval()

    test_width = 544
    test_height = 544

    # Get the parser for the test dataset
    valid_dataset = dataset_multi.listDataset(valid_images,
                                              shape=(test_width, test_height),
                                              shuffle=False,
                                              objclass=name,
                                              transform=transforms.Compose([
                                                  transforms.ToTensor(),
                                              ]))
    valid_batchsize = 1

    # Specify the number of workers for multiple processing, get the dataloader for the test dataset
    kwargs = {'num_workers': 4, 'pin_memory': True}
    test_loader = torch.utils.data.DataLoader(valid_dataset,
                                              batch_size=valid_batchsize,
                                              shuffle=False,
                                              **kwargs)

    # Parameters
    use_cuda = True
    num_classes = 2
    anchors = [
        1.4820, 2.2412, 2.0501, 3.1265, 2.3946, 4.6891, 3.1018, 3.9910, 3.4879,
        5.8851
    ]
    num_anchors = 5
    eps = 1e-5
    conf_thresh = conf_th
    iou_thresh = 0.5

    # Parameters to save
    errs_2d = []
    edges = [[1, 2], [1, 3], [1, 5], [2, 4], [2, 6], [3, 4], [3, 7], [4, 8],
             [5, 6], [5, 7], [6, 8], [7, 8]]
    edges_corners = [[0, 1], [0, 2], [0, 4], [1, 3], [1, 5], [2, 3], [2, 6],
                     [3, 7], [4, 5], [4, 6], [5, 7], [6, 7]]

    # Iterate through test batches (Batch size for test data is 1)
    logging('Testing {}...'.format(name))
    for batch_idx, (data, target) in enumerate(test_loader):

        t1 = time.time()
        # Pass data to GPU
        if use_cuda:
            data = data.cuda()
            # target = target.cuda()

        # Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
        data = Variable(data, volatile=True)
        t2 = time.time()

        # Forward pass
        output = model(data).data
        t3 = time.time()

        # Using confidence threshold, eliminate low-confidence predictions
        trgt = target[0].view(-1, 21)
        all_boxes = get_corresponding_region_boxes(output,
                                                   conf_thresh,
                                                   num_classes,
                                                   anchors,
                                                   num_anchors,
                                                   int(trgt[0][0]),
                                                   only_objectness=0)
        t4 = time.time()

        # Iterate through all images in the batch
        for i in range(output.size(0)):

            # For each image, get all the predictions
            boxes = all_boxes[i]

            # For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
            truths = target[i].view(-1, 21)
            if debug_multi:
                print(type(truth))

            # Get how many object are present in the scene
            num_gts = truths_length(truths)
            if debug_multi:
                print('numbers of ground truth: ' + str(num_gts))

            # Iterate through each ground-truth object
            for k in range(num_gts):
                if debug_multi:
                    print('object class in label is: ' + str(truths[k][0]))

                box_gt = [
                    truths[k][1], truths[k][2], truths[k][3], truths[k][4],
                    truths[k][5], truths[k][6], truths[k][7], truths[k][8],
                    truths[k][9], truths[k][10], truths[k][11], truths[k][12],
                    truths[k][13], truths[k][14], truths[k][15], truths[k][16],
                    truths[k][17], truths[k][18], 1.0, 1.0, truths[k][0]
                ]
                best_conf_est = -1

                # If the prediction has the highest confidence, choose it as our prediction
                for j in range(len(boxes)):
                    if (boxes[j][18] > best_conf_est) and (boxes[j][20] == int(
                            truths[k][0])):
                        best_conf_est = boxes[j][18]
                        box_pr = boxes[j]
                        bb2d_gt = get_2d_bb(box_gt[:18], output.size(3))
                        bb2d_pr = get_2d_bb(box_pr[:18], output.size(3))
                        iou = bbox_iou(bb2d_gt, bb2d_pr)
                        match = corner_confidence9(
                            box_gt[:18], torch.FloatTensor(boxes[j][:18]))

                # Denormalize the corner predictions
                corners2D_gt = np.array(np.reshape(box_gt[:18], [9, 2]),
                                        dtype='float32')
                corners2D_pr = np.array(np.reshape(box_pr[:18], [9, 2]),
                                        dtype='float32')
                corners2D_gt[:, 0] = corners2D_gt[:, 0] * 1280
                corners2D_gt[:, 1] = corners2D_gt[:, 1] * 720
                corners2D_pr[:, 0] = corners2D_pr[:, 0] * 1280
                corners2D_pr[:, 1] = corners2D_pr[:, 1] * 720
                #corners2D_gt_corrected = fix_corner_order(corners2D_gt) # Fix the order of corners
                # don't fix corner since the order is already correct
                corners2D_gt_corrected = corners2D_gt

                if debug_multi:
                    print('2d corners ground truth: ')
                    print(type(corners2D_gt_corrected))
                    print(corners2D_gt_corrected)

                # Compute [R|t] by pnp
                objpoints3D = np.array(np.transpose(
                    np.concatenate((np.zeros((3, 1)), corners3D[:3, :]),
                                   axis=1)),
                                       dtype='float32')
                # make correction to 3D points for class 2 & 3 (i.e. upperPortRed and uppoerPortBlue)
                correspondingclass = boxes[j][20]
                if (correspondingclass == 2 or correspondingclass == 3):
                    x_min_3d = 0
                    x_max_3d = 1.2192
                    y_min_3d = 0
                    y_max_3d = 1.1176
                    z_min_3d = 0
                    z_max_3d = 0.003302
                    centroid = [(x_min_3d + x_max_3d) / 2,
                                (y_min_3d + y_max_3d) / 2,
                                (z_min_3d + z_max_3d) / 2]

                    objpoints3D = np.array([centroid,\
                    [ x_min_3d, y_min_3d, z_min_3d],\
                    [ x_min_3d, y_min_3d, z_max_3d],\
                    [ x_min_3d, y_max_3d, z_min_3d],\
                    [ x_min_3d, y_max_3d, z_max_3d],\
                    [ x_max_3d, y_min_3d, z_min_3d],\
                    [ x_max_3d, y_min_3d, z_max_3d],\
                    [ x_max_3d, y_max_3d, z_min_3d],\
                    [ x_max_3d, y_max_3d, z_max_3d]])

                K = np.array(internal_calibration, dtype='float32')
                _, R_gt, t_gt = pnp(objpoints3D, corners2D_gt_corrected, K)
                _, R_pr, t_pr = pnp(objpoints3D, corners2D_pr, K)

                # Compute pixel error
                Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
                Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
                proj_2d_gt = compute_projection(vertices, Rt_gt,
                                                internal_calibration)
                proj_2d_pred = compute_projection(vertices, Rt_pr,
                                                  internal_calibration)
                proj_corners_gt = np.transpose(
                    compute_projection(corners3D, Rt_gt, internal_calibration))
                proj_corners_pr = np.transpose(
                    compute_projection(corners3D, Rt_pr, internal_calibration))
                norm = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
                pixel_dist = np.mean(norm)
                errs_2d.append(pixel_dist)

        t5 = time.time()

    # Compute 2D projection score
    for px_threshold in [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]:
        acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (
            len(errs_2d) + eps)
        # Print test statistics
        logging('   Acc using {} px 2D Projection = {:.2f}%'.format(
            px_threshold, acc))
Exemple #4
0
    # Pass the model to GPU
    params_dict = dict(model.named_parameters())
    params = []
    #init_epoch        = model.seen//nsamples
    for key, value in params_dict.items():
        if key.find('.bn') >= 0 or key.find('.bias') >= 0:
            params += [{'params': [value], 'weight_decay': 0.0}]
        else:
            params += [{'params': [value], 'weight_decay': decay * batch_size}]
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    # optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam optimization
    if use_cuda:
        # model = model.cuda()
        #model = torch.nn.DataParallel(model).cuda() # Multiple GPU parallelism
        model = model.cuda()  # Multiple GPU parallelism

    # Get the optimizer

    evaluate = True
    if evaluate:
        logging('evaluating ...')
        test(0)
    else:
        for epoch in range(init_epoch, max_epochs):
            # TRAIN
            niter, loss = train(epoch)
            # TEST and SAVE
            if ((epoch + 1) % save_interval
                    == 0) and (not pre) and (loss < 10):
                acc = test(epoch)