Exemple #1
0
def main(
    address,
    enable_nvlink,
    enable_infiniband,
):

    enable_rdmacm = False
    ucx_net_devices = None

    if enable_infiniband:
        # enable_rdmacm = True  # RDMACM not working right now
        ucx_net_devices = "mlx5_0:1"

    # set up environment
    initialize(
        enable_tcp_over_ucx=True,
        enable_nvlink=enable_nvlink,
        enable_infiniband=enable_infiniband,
        enable_rdmacm=enable_rdmacm,
        net_devices=ucx_net_devices,
    )

    # initialize client
    client = Client(address)

    # user code here
    rs = da.random.RandomState(RandomState=cupy.random.RandomState)
    x = rs.random((10000, 10000), chunks=1000)
    x.sum().compute()

    # shutdown cluster
    client.shutdown()
Exemple #2
0
class DaskHandler(IProcessingHandler):
    """This class wraps all Dask related functions."""

    def __init__(self, number_of_workers, class_cb: Callable, brain_class, worker_log_level=logging.WARNING):
        super().__init__(number_of_workers)
        self._client: Optional[Client] = None
        self._cluster: Optional[LocalCluster] = None

        self.class_cb = class_cb
        self.brain_class = brain_class
        self.worker_log_level = worker_log_level

    def init_framework(self):
        if self._client:
            raise RuntimeError("Dask client already initialized.")

        # threads_per_worker must be one, because atari-env is not thread-safe.
        # And because lower the thread-count from the default, we must increase the number of workers
        self._cluster = LocalCluster(processes=True, asynchronous=False, threads_per_worker=1,
                                     silence_logs=self.worker_log_level,
                                     n_workers=self.number_of_workers,
                                     memory_pause_fraction=False,
                                     lifetime='1 hour', lifetime_stagger='5 minutes', lifetime_restart=True,
                                     interface="lo")
        self._client = Client(self._cluster)
        self._client.register_worker_plugin(_CreatorPlugin(self.class_cb, self.brain_class), name="creator-plugin")
        logging.info("Dask dashboard available at port: " + str(self._client.scheduler_info()["services"]["dashboard"]))

    def map(self, func, *iterable):
        if not self._client:
            raise RuntimeError("Dask client not initialized. Call \"init_framework\" before calling \"map\"")
        return self._client.gather(self._client.map(func, *iterable))

    def cleanup_framework(self):
        self._client.shutdown()
Exemple #3
0
def main():
    """Evaluation loop finding the best trackmate parameters in three steps.

    1. Find set of thresholds based on median-normalized quantiles
    2. Process all files distributed outputting the F1 score across thresholds
    3. Meaning across images and determination of best parameters
    """
    args = _parse_args()
    basedir = args.basedir
    threshold = float(args.threshold)

    # Start dask client with default: localhost:8787
    client = Client()
    print("Dask client started.")

    files = glob.glob(os.path.join(basedir, "test_predictions", "*.csv"))

    def f(files):
        """Processes all files by calling delayed functions for each step."""
        results = []

        for file in files:
            fname, pred = load_prediction(file, threshold)
            true = load_true(basedir, fname)
            df = process(fname, pred, true)
            result = save(basedir, fname, df)
            results.append(result)

        return results

    result = dask.compute(f(files))[0]  # Returns tuple
    print("Files processed.")

    client.shutdown()
Exemple #4
0
def run_simulations_dask(daylist, posxs, moduleWiths, kwargs):
    # Create client

    scheduler_file = '/scratch/sayala/dask_testing/scheduler.json'
    client = Client(scheduler_file=scheduler_file)

    # Iterate over inputs
    futures = []

    # Add Iterations HERE

    for daydate in daylist:
        for posx in posxs:
            for moduleWith in moduleWiths:
                futures.append(
                    client.submit(simulate_single,
                                  daydate=daydate,
                                  posx=posx,
                                  moduleWith=moduleWith,
                                  **kwargs))

    # Get results for all simulations
    res = client.gather(futures)

    # Close all dask workers and scheduler
    try:
        client.shutdown()
    except:
        pass

    # Close client
    client.close()

    res = 'FINISHED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
    return res
Exemple #5
0
def run_simulations_dask(xgaps, numpanelss, sensorsxs, kwargs):
    # Create client

    scheduler_file = '/scratch/sayala/dask_testing/scheduler.json'
    client = Client(scheduler_file=scheduler_file)

    # Iterate over inputs
    futures = []

    for nn in range(0, len(numpanelss)):
        numpanels = numpanelss[nn]
        for xx in range(0, len(xgaps)):
            xgap = xgaps[xx]
            for ii in sensorsxs:
                futures.append(
                    client.submit(simulate_single,
                                  xgap=xgap,
                                  numpanels=numpanels,
                                  sensorx=ii,
                                  **kwargs))

    # Get results for all simulations
    res = client.gather(futures)

    # Close all dask workers and scheduler
    try:
        client.shutdown()
    except:
        pass

    # Close client
    client.close()

    res = 'FINISHED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
    return res
Exemple #6
0
def run_simulations_dask(clearance_heights, xgaps, Ds, tilts, kwargs):
    # Create client
    
    scheduler_file = '/scratch/sayala/dask_testing/scheduler.json'
    client = Client(scheduler_file=scheduler_file)
    
    # Iterate over inputs
    futures = []
    
    for ch in range (0, len(clearance_heights)):
        clearance_height = clearance_heights[ch]
        for xx in range (0, len(xgaps)):
            xgap = xgaps[xx]
            for tt in range (0, len(tilts)):
                tilt = tilts[tt]
                for dd in range (0, len(Ds)):
                    D = Ds[dd]
                    futures.append(client.submit(simulate_single, clearance_height=clearance_height,
                                                            xgap=xgap, tilt=tilt, D=D, **kwargs))

    # Get results for all simulations
    res = client.gather(futures)
    
    # Close all dask workers and scheduler
    try:
    	client.shutdown()
    except:
        pass

    # Close client
    client.close()

    res = 'FINISHED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
    return res
def run_simulations_dask(tilts, kwargs):
    # Create client

    scheduler_file = '/scratch/sayala/dask_testing/scheduler.json'
    client = Client(scheduler_file=scheduler_file)

    # Iterate over inputs
    futures = []

    # Add Iterations HERE

    for tilt in tilts:
        futures.append(client.submit(simulate_single, tilt=tilt, **kwargs))

    # Get results for all simulations
    res = client.gather(futures)

    # Close all dask workers and scheduler
    try:
        client.shutdown()
    except:
        pass

    # Close client
    client.close()

    res = 'FINISHED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
    return res
def DASK_batch_mult(matrix_input, vector_input, workers, batch_size,
                    input_size, output_channels):
    client = Client(n_workers=workers)
    results = []
    batch_no = matrix_input.shape[0] // batch_size

    for i in range(batch_no):
        batch = client.scatter(matrix_input[i * batch_size:i * batch_size +
                                            batch_size])
        results.append(
            client.submit(convolution_mean, batch, vector_input, batch_size,
                          vector_input.shape[0]))

    wait(results)
    data = client.gather(results)
    out_tensor = np.empty(
        (batch_size * batch_no, output_channels, input_size, input_size))
    for i in range(batch_no):
        out_tensor[i * batch_size:i * batch_size +
                   batch_size] = data[i].reshape(batch_size, output_channels,
                                                 input_size, input_size)

    client.shutdown()

    return out_tensor
Exemple #9
0
class GenerateHindcastEnsembleDaskDistributed(GenerateHindcastEnsembleDask):
    def setup(self, *args, **kwargs):
        """The same tests but on spatially chunked data with dask.distributed.Client."""
        _skip_slow()
        requires_dask()
        super().setup(**kwargs)
        self.client = Client()

    def cleanup(self):
        self.client.shutdown()
Exemple #10
0
def _stop_dask_scheduler(args):
    print("Start stop scheduler.")
    client = Client("{}:{}".format(args.master, args.port))
    try:
        client.shutdown()
        client.close()
        del client
        # print("Scheduler stopped.")
        time.sleep(8)
    except Exception:
        print("Failed to stop scheduler, please stop it manually.")
Exemple #11
0
def _stop_dask_scheduler(args):
    global _port
    _print("Start stop scheduler.")
    client = Client(f"{args.master}:{_port}")
    try:
        client.shutdown()
        client.close()
        del client
        time.sleep(8)
    except Exception:
        _print("Failed to stop scheduler, please stop it manually.")
Exemple #12
0
def managed_client(devices, device_limit, protocol):
    client = Client(
        LocalCUDACluster(
            protocol=protocol,
            n_workers=len(devices.split(",")),
            enable_nvlink=(protocol == "ucx"),
            device_memory_limit=device_limit,
        ))
    try:
        yield client
    finally:
        client.shutdown()
Exemple #13
0
class ComputeDaskDistributed(ComputeDask):
    def setup(self, *args, **kwargs):
        """Benchmark time and peak memory of `compute_perfect_model` and
        `bootstrap_perfect_model`. This executes the same tests as `Compute` but
        on chunked data with dask.distributed.Client."""
        requires_dask()
        # magic taken from
        # https://github.com/pydata/xarray/blob/stable/asv_bench/benchmarks/rolling.py
        super().setup(**kwargs)
        self.client = Client()

    def cleanup(self):
        self.client.shutdown()
Exemple #14
0
def main():
    """Evaluation loop finding the best trackmate parameters in three steps.

    1. Find set of thresholds based on median-normalized quantiles
    2. Process all files distributed outputting the F1 score across thresholds
    3. Meaning across images and determination of best parameters
    """
    args = _parse_args()
    basedir = args.basedir

    # Start dask client with default: localhost:8787
    client = Client()
    print("Dask client started.")

    # Calculate thresholds
    files = glob.glob(os.path.join(basedir, "train_predictions", "*.csv"))
    thresholds = get_thresholds(basedir, files)
    print("Thresholds calculated / loaded.")

    # Process files
    def f(files):
        """Processes all files by calling delayed functions for each step."""
        results = []

        for file in files:
            fname, detector, radius, pred_all = load_prediction(file)
            true = load_true(basedir, fname)
            df = process(fname, detector, radius, pred_all, true, thresholds)
            result = save(basedir, fname, df)
            results.append(result)

        return results

    # Compute files in batch
    length = len(files)
    batch_size = 100
    for idx in range(0, length, batch_size):
        dask.compute(f(files[idx:min(idx + batch_size, length)]))
    print("Files processed.")

    # Compute maximal scores
    df_max = get_max_scores(basedir)

    with open(os.path.join(basedir, "info.txt"), "a") as f:
        f.write(f"Optimal parameters found are:")
        f.write(f'... F1 score: {df_max["f1_score"][0]}')
        f.write(f'... Detector: {df_max["detector"][0]}')
        f.write(f'... Radius: {df_max["radius"][0]}')
        f.write(f'... Threshold: {df_max["threshold"][0]}')

    client.shutdown()
Exemple #15
0
class DaskCluster:
    def __init__(self):
        self.client = None

    def start_local_cluster(self):
        cluster = LocalCluster(
            n_workers=dask_options_dict['n_workers'],
            threads_per_worker=dask_options_dict['threads_per_worker'],
            memory_limit=dask_options_dict['memory_limit']
        )  # threads_per_worker=1 needed if using numba :(
        self.client = Client(cluster)

    def stop_local_cluster(self):
        self.client.shutdown()
        self.client = None
Exemple #16
0
def code_range(path_dict):
    """
    path_dict = RANGE_CATEGORIES[5]
    """

    # Create a numeric dictionary for these keys
    key_dict = {key: i + 1 for i, key in enumerate(path_dict.keys())}
    number_dict = {k: i for i, k in key_dict.items()}
    vals = key_dict.values()
    combos = [[c for c in combinations(vals, i + 1)] for i in range(len(vals))]
    combos = [c for sc in combos for c in sc]
    combo_keys = {}
    for combo in combos:
        key = "-".join([number_dict[c] for c in combo])
        value = seq_int(combo)
        combo_keys[key] = value

    # Assign each raster a unique value
    arrays = []
    for key, path in path_dict.items():
        value = key_dict[key]
        full_path = DP.join(path)
        array = xr.open_rasterio(full_path, chunks=CHUNKS)[0].data
        array[da.isnan(array)] = 0
        array[array > 0] = value
        arrays.append(array)

    # Stack everything together - we might have to save this a temporary file
    stack = da.stack(arrays, axis=0)
    stack = stack.rechunk((stack.shape[0], 5000, 5000))
    stack = stack[:, 4000:10000, 4000:10000]

    # Try to map the function to each point
    client = Client()
    codes = da.apply_along_axis(seq_int, 0, stack, dtype="uint8")
    future = client.compute(codes)
    result = future.result()
    client.shutdown()
    client.close()

    # Save to temp and delete
    template = rasterio.open(full_path)
    temp_path = DP2.join("test.tif")
    with rasterio.Env():
        profile = template.profile
        profile.update(dtype=rasterio.uint8, count=1, compress='lzw')
        with rasterio.open(temp_path, 'w', **profile) as dst:
            dst.write(result)
Exemple #17
0
    def test_do_not_close_external_client(self):
        tmp_dir = tempfile.mkdtemp()

        single_worker_mock = unittest.mock.Mock()
        client = Client()
        parallel_runner = DaskParallelRunner(
            single_worker=single_worker_mock, dask_client=client, n_workers=1, output_directory=tmp_dir
        )  # noqa F841
        del parallel_runner
        self.assertFalse(os.path.exists(os.path.join(tmp_dir, '.dask_scheduler_file')))
        self.assertEqual(client.status, 'running')
        parallel_runner = DaskParallelRunner(
            single_worker=single_worker_mock, dask_client=client, n_workers=1, output_directory=tmp_dir
        )  # noqa F841
        del parallel_runner
        self.assertEqual(client.status, 'running')
        client.shutdown()
Exemple #18
0
def main():
    object = ps.preprocess()
    X_train, X_test, y_train, y_test = object.cleaning()
    param_grid = {
                'objective': ['binary:logistic'],
                'nround': [1000],
                'max_depth': [8]
    }
    estimator = xgb.XGBRegressor()
    grid_search = GridSearchCV(estimator, param_grid, verbose=2, cv=2,  n_jobs=-1)
    client = Client(processes=False)
    start_time = time.time()
    with joblib.parallel_backend("dask"):
        grid_search.fit(X_train, y_train)
    end_time = time.time()
    grid_search.predict(X_test)
    print ("time difference in GridSearchCV first XGBRegressor is %d seconds" % end_time)
    client.shutdown()
Exemple #19
0
def cache_sofk(fout, fjson, Sk, nx, verbose=True, para=True):
  if para:
    import dask
    from dask.distributed import Client, progress
    client = Client(processes=False)
    Sk = dask.delayed(Sk)

  import pandas as pd
  mdf = pd.read_json(fjson)
  box = mdf.iloc[0]['box']
  kvecs = legal_kvecs(nx, box)
  nk = len(kvecs)

  if verbose and (not para):
    from progressbar import ProgressBar, Bar, ETA
    widgets = [Bar('>'), ETA()]
    bar = ProgressBar(widgets=widgets, maxval=len(mdf))
    bar.start()

  skl = []
  sk2l = []
  isk = 0
  for label, row in mdf.iterrows():
    com = np.array(row['positions'])
    sk = Sk(kvecs, com)
    skl.append(sk)
    sk2l.append(sk**2)

    isk += 1
    if verbose and (not para):
      bar.update(isk)
  skm = np.mean(skl, axis=0)
  ske = (np.mean(sk2l, axis=0)-skm**2)**0.5/len(skl)**0.5

  if para:
    skm, ske = dask.persist(skm, ske)
    if verbose:
      progress(skm, ske)
    skm, ske = dask.compute(skm, ske)
    client.shutdown()

  # spherical average
  uk, uskm, uske = shavg(kvecs, skm, ske)
  np.savetxt(fout, np.array([uk, uskm, uske]).T)
def start_dask(num_workers, msg, logger):
    """Context manager used for starting/shutting down dask

    Args:
        num_workers (`int`): Number of dask workers
        msg (`str`): Message for timer
        logger: The logger being used

    Yields:
        client: Dask client
    """

    # Update dask
    with open("dask-config.yaml") as f:
        config = yaml.load(f, Loader=SafeLoader)
        dask.config.update(dask.config.config, config)

    cluster_type = next(iter(dask.config.config['jobqueue']))
    set_local_directory(cluster_type)

    if cluster_type == 'local':
        from dask.distributed import LocalCluster
        cluster = LocalCluster(n_workers=num_workers, threads_per_worker=1)
    else:
        if cluster_type == 'lsf':
            from dask_jobqueue import LSFCluster
            cluster = LSFCluster()
        elif cluster_type == 'slurm':
            from dask_jobqueue import SLURMCluster
            cluster = SLURMCluster()
        elif cluster_type == 'sge':
            from dask_jobqueue import SGECluster
            cluster = SGECluster()
        cluster.scale(num_workers)
    try:
        with io_util.Timing_Messager(f"Starting dask cluster for {msg}",
                                     logger):
            client = Client(cluster)
        io_util.print_with_datetime(
            f"Check {client.cluster.dashboard_link} for {msg} status.", logger)
        yield client
    finally:
        client.shutdown()
        client.close()
Exemple #21
0
def connection():
    """
    Creates a mock Dask cluster. Returns the corresponding connection object.

    Note that the name of this fixture will be used to inject the result into an
    equally named variable that should be used as input argument to all tests
    that need it. Example:

    ```
    def test_my_feature(connection):
        df = RDataFrame(10, daskclient=connection)
    ```
    """
    connection = Client(
        LocalCluster(n_workers=2,
                     threads_per_worker=1,
                     processes=True,
                     memory_limit="2GiB"))
    yield connection
    connection.shutdown()
    connection.close()
Exemple #22
0
def main():
    object = ps.preprocess()
    X_train, X_test, y_train, y_test = object.cleaning()
    params = {'objective': 'binary:logistic',
          'max_depth': 8, 'eta': 0.01, 'subsample': 0.5,
          'min_child_weight': 1}
    print ("Start training dxgb")

    cluster = LocalCluster(n_workers=8, threads_per_worker=1)
    client = Client(cluster)
    start_time = time.time()
    bst = dxgb.train(client, params, X_train, y_train)
    end_time = time.time()
    #time difference in dXGB is 1588108665
    print ("time difference in dXGB is %d seonds" % end_time)
    predictions = dxgb.predict(client, bst, X_test)
    #Accuracy = 0.6968888393419537
    print ("Accuracy score is : ")
    print(roc_auc_score(y_test.compute(),
                    predictions.compute()))
    client.shutdown()
Exemple #23
0
def dask_client():
    dask_scheduler_file = os.environ.get("SCHEDULER_FILE")
    cluster = None
    client = None
    tempdir_object = None

    if dask_scheduler_file:
        # Env var UCX_MAX_RNDV_RAILS=1 must be set too.
        initialize(
            enable_tcp_over_ucx=True,
            enable_nvlink=True,
            enable_infiniband=True,
            enable_rdmacm=True,
            # net_devices="mlx5_0:1",
        )
        client = Client(scheduler_file=dask_scheduler_file)
        print("\ndask_client fixture: client created using "
              f"{dask_scheduler_file}")
    else:
        # The tempdir created by tempdir_object should be cleaned up once
        # tempdir_object goes out-of-scope and is deleted.
        tempdir_object = tempfile.TemporaryDirectory()
        cluster = LocalCUDACluster(local_directory=tempdir_object.name)
        client = Client(cluster)
        client.wait_for_workers(len(get_visible_devices()))
        print("\ndask_client fixture: client created using LocalCUDACluster")

    Comms.initialize(p2p=True)

    yield client

    Comms.destroy()
    # Shut down the connected scheduler and workers
    # therefore we will no longer rely on killing the dask cluster ID
    # for MNMG runs
    client.shutdown()
    if cluster:
        cluster.close()
    print("\ndask_client fixture: client.close() called")
Exemple #24
0
def run_simulations_dask(arraysimulations, kwargs):
    # Create client

    scheduler_file = '/scratch/sayala/dask_testing/scheduler.json'
    client = Client(scheduler_file=scheduler_file)

    # Iterate over inputs
    futures = []

    for ii in range(0, len(arraysimulations)):
        idx = arraysimulations.iloc[ii].idx
        wavelength = arraysimulations.iloc[ii].wavelength
        test_folder = test_folder_fmt.format(f'{idx:04}', f'{wavelength:04}')
        if not os.path.exists(test_folder):
            futures.append(
                client.submit(simulate_single,
                              idx=idx,
                              wavelength=wavelength,
                              **kwargs))
        else:
            print("\n\nAlready simulated ***********************\n\n", idx,
                  wavelength)

    # Get results for all simulations
    res = client.gather(futures)

    # Close all dask workers and scheduler
    try:
        client.shutdown()
    except:
        pass

    # Close client
    client.close()

    res = 'FINISHED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
    return res
Exemple #25
0
def managed_client(dask_workdir, devices, device_limit, protocol):
    if protocol == "tcp":
        client = Client(
            LocalCUDACluster(
                protocol=protocol,
                n_workers=len(devices.split(",")),
                CUDA_VISIBLE_DEVICES=devices,
                device_memory_limit=device_limit,
                local_directory=dask_workdir,
            ))
    else:
        client = Client(
            LocalCUDACluster(
                protocol=protocol,
                n_workers=len(devices.split(",")),
                CUDA_VISIBLE_DEVICES=devices,
                enable_nvlink=True,
                device_memory_limit=device_limit,
                local_directory=dask_workdir,
            ))
    try:
        yield client
    finally:
        client.shutdown()
Exemple #26
0
def connection():
    """
    Creates a mock Dask cluster as well as a mock Spark cluster. Returns a tuple
    with both connection objects.

    Note that the name of this fixture will be used to inject the result into an
    equally named variable that should be used as input argument to all tests
    that need it. Example:

    ```
    def test_my_feature(connection):
        # The tests in this folder need both dask and spark connections
        daskclient, sparkcontext = connection
        df1 = RDataFrame(10, daskclient=daskclient)
        df2 = RDataFrame(10, sparkcontext=sparkcontext)
    ```
    """
    daskconn = Client(
        LocalCluster(n_workers=2,
                     threads_per_worker=1,
                     processes=True,
                     memory_limit="2GiB"))

    conf = {
        "spark.master": "local[2]",
        "spark.driver.memory": "4g",
        "spark.app.name": "roottest-distrdf-common"
    }
    sparkconf = pyspark.SparkConf().setAll(conf.items())
    sparkconn = pyspark.SparkContext(conf=sparkconf)

    yield daskconn, sparkconn

    daskconn.shutdown()
    daskconn.close()
    sparkconn.stop()
Exemple #27
0
    print("Merging outputs")
    hists = {ds[0]: [] for ds in datasets}
    numevents = {ds[0]: 0 for ds in datasets}
    for r, _args in zip(ret, arglist):
        rh = r["hists"]
        ds = _args[2]
        hists[ds] += [Results(r["hists"])]
        numevents[ds] += r["numevents"]

    timing = sum([r["timing"] for r in ret], Results({}))
    timing["cuda"] = use_cuda
    timing["njec"] = args.njec
    timing["nthreads"] = args.nthreads
    timing["walltime"] = walltime_t1 - walltime_t0

    for k, v in hists.items():
        hists[k] = sum(hists[k], Results({}))

    print("Writing output pkl")
    with open(args.out, "wb") as fi:
        pickle.dump({
            "hists": hists,
            "numevents": numevents,
            "timing": timing
        }, fi)
    client.shutdown()
    sum_numev = sum(numevents.values())
    print("Processed {0} events in {1:.1f} seconds, {2:.2E} Hz".format(
        sum_numev, timing["walltime"], sum_numev / timing["walltime"]))
def main(args):
    cluster_options = get_cluster_options(args)
    Cluster = cluster_options["class"]
    cluster_args = cluster_options["args"]
    cluster_kwargs = cluster_options["kwargs"]
    scheduler_addr = cluster_options["scheduler_addr"]

    if args.sched_addr:
        client = Client(args.sched_addr)
    else:
        filterwarnings("ignore",
                       message=".*NVLink.*rmm_pool_size.*",
                       category=UserWarning)

        cluster = Cluster(*cluster_args, **cluster_kwargs)
        if args.multi_node:
            import time

            # Allow some time for workers to start and connect to scheduler
            # TODO: make this a command-line argument?
            time.sleep(15)

        client = Client(scheduler_addr if args.multi_node else cluster)

    if args.type == "gpu":
        client.run(
            setup_memory_pool,
            pool_size=args.rmm_pool_size,
            disable_pool=args.disable_rmm_pool,
            log_directory=args.rmm_log_directory,
        )
        # Create an RMM pool on the scheduler due to occasional deserialization
        # of CUDA objects. May cause issues with InfiniBand otherwise.
        client.run_on_scheduler(
            setup_memory_pool,
            pool_size=1e9,
            disable_pool=args.disable_rmm_pool,
            log_directory=args.rmm_log_directory,
        )

    scheduler_workers = client.run_on_scheduler(get_scheduler_workers)
    n_workers = len(scheduler_workers)
    client.wait_for_workers(n_workers)

    if args.all_to_all:
        all_to_all(client)

    took_list = []
    for _ in range(args.runs - 1):
        took_list.append(run(client, args, n_workers, write_profile=None))
    took_list.append(
        run(client, args, n_workers,
            write_profile=args.profile))  # Only profiling the last run

    # Collect, aggregate, and print peer-to-peer bandwidths
    incoming_logs = client.run(
        lambda dask_worker: dask_worker.incoming_transfer_log)
    bandwidths = defaultdict(list)
    total_nbytes = defaultdict(list)
    for k, L in incoming_logs.items():
        for d in L:
            if d["total"] >= args.ignore_size:
                bandwidths[k, d["who"]].append(d["bandwidth"])
                total_nbytes[k, d["who"]].append(d["total"])
    bandwidths = {(scheduler_workers[w1].name, scheduler_workers[w2].name): [
        "%s/s" % format_bytes(x)
        for x in numpy.quantile(v, [0.25, 0.50, 0.75])
    ]
                  for (w1, w2), v in bandwidths.items()}
    total_nbytes = {(
        scheduler_workers[w1].name,
        scheduler_workers[w2].name,
    ): format_bytes(sum(nb))
                    for (w1, w2), nb in total_nbytes.items()}

    t_runs = numpy.empty(len(took_list))
    if args.markdown:
        print("```")
    print("Shuffle benchmark")
    print("-------------------------------")
    print(f"backend        | {args.backend}")
    print(f"partition-size | {format_bytes(args.partition_size)}")
    print(f"in-parts       | {args.in_parts}")
    print(f"protocol       | {args.protocol}")
    print(f"device(s)      | {args.devs}")
    if args.device_memory_limit:
        print(f"memory-limit   | {format_bytes(args.device_memory_limit)}")
    print(f"rmm-pool       | {(not args.disable_rmm_pool)}")
    if args.protocol == "ucx":
        print(f"tcp            | {args.enable_tcp_over_ucx}")
        print(f"ib             | {args.enable_infiniband}")
        print(f"nvlink         | {args.enable_nvlink}")
    print(f"data-processed | {format_bytes(took_list[0][0])}")
    print("===============================")
    print("Wall-clock     | Throughput")
    print("-------------------------------")
    for idx, (data_processed, took) in enumerate(took_list):
        throughput = int(data_processed / took)
        m = format_time(took)
        m += " " * (15 - len(m))
        print(f"{m}| {format_bytes(throughput)}/s")
        t_runs[idx] = float(format_bytes(throughput).split(" ")[0])
    print("===============================")
    if args.markdown:
        print("\n```")

    if args.plot is not None:
        plot_benchmark(t_runs, args.plot, historical=True)

    if args.backend == "dask":
        if args.markdown:
            print(
                "<details>\n<summary>Worker-Worker Transfer Rates</summary>\n\n```"
            )
        print("(w1,w2)        | 25% 50% 75% (total nbytes)")
        print("-------------------------------")
        for (d1, d2), bw in sorted(bandwidths.items()):
            fmt = ("(%s,%s)        | %s %s %s (%s)" if args.multi_node or
                   args.sched_addr else "(%02d,%02d)        | %s %s %s (%s)")
            print(fmt % (d1, d2, bw[0], bw[1], bw[2], total_nbytes[(d1, d2)]))
        if args.markdown:
            print("```\n</details>\n")

    if args.benchmark_json:
        bandwidths_json = {
            "bandwidth_({d1},{d2})_{i}" if args.multi_node or args.sched_addr
            else "(%02d,%02d)_%s" % (d1, d2, i): parse_bytes(v.rstrip("/s"))
            for (d1, d2), bw in sorted(bandwidths.items()) for i, v in zip(
                ["25%", "50%", "75%", "total_nbytes"],
                [bw[0], bw[1], bw[2], total_nbytes[(d1, d2)]],
            )
        }

        with open(args.benchmark_json, "a") as fp:
            for data_processed, took in took_list:
                fp.write(
                    dumps(
                        dict(
                            {
                                "backend": args.backend,
                                "partition_size": args.partition_size,
                                "in_parts": args.in_parts,
                                "protocol": args.protocol,
                                "devs": args.devs,
                                "device_memory_limit":
                                args.device_memory_limit,
                                "rmm_pool": not args.disable_rmm_pool,
                                "tcp": args.enable_tcp_over_ucx,
                                "ib": args.enable_infiniband,
                                "nvlink": args.enable_nvlink,
                                "data_processed": data_processed,
                                "wall_clock": took,
                                "throughput": data_processed / took,
                            },
                            **bandwidths_json,
                        )) + "\n")

    if args.multi_node:
        client.shutdown()
        client.close()
Exemple #29
0
    c = None
    if len(sys.argv) > 1 and int(sys.argv[1]) > 1:
        print(f"Starting dask Client with {sys.argv[1]} processors")
        c = Client(threads_per_worker=1, n_workers=int(sys.argv[1]))
        print("client started...")

    # load in gadget, set a selection
    ds = yt.load_sample("snapshot_033")
    ptf = {'PartType0': ['Mass']}
    sp = ds.sphere(ds.domain_center, (2, 'code_length'))

    select_time = time.time()
    glob_stats, chunk_stats = ga.selector_stats(ds, ptf, sp.selector)
    # glob_stats, chunk_stats = ga.selector_stats(ds,ptf) # for no selector
    select_time = time.time() - select_time

    print("\nlocal stats for each chunk:")
    for ch in chunk_stats:
        print(ch)

    print("\nglobal, cross-chunk stats")
    print(glob_stats)

    print(
        f"\nCompute time (neglecting Client spinup and yt initialization): {select_time}s"
    )

    if c is not None:
        print("\nshutting down dask client")
        c.shutdown()
Exemple #30
0
def test_prefect_executors(train_data, grid_search, parallel_columns):
    try:
        from prefect.engine.executors import DaskExecutor
        from prefect.engine.executors import LocalDaskExecutor
        from prefect.engine.executors import LocalExecutor
        from dask.distributed import Client
    except:
        print("`prefect` not installed, skipping the test...")
        pass
    else:
        client = Client()

        executors = {
            "dask_already_running":
            DaskExecutor(address=client.scheduler.address),
            "local": LocalExecutor(),
            "local_dask": LocalDaskExecutor(),
            "dask_create_on_call": DaskExecutor(
            ),  # this spins up LocalDaskExecutor, but just to check the interface
        }

        for executor_name, executor in executors.items():
            flow, state = run_model_selection(
                df=train_data,
                grid_search=grid_search,
                target_col_name="Quantity",
                frequency="D",
                partition_columns=["Product"],
                parallel_over_columns=parallel_columns,
                include_rules=None,
                exclude_rules=None,
                country_code_column="Holidays_code",
                output_path="",
                persist_cv_results=False,
                persist_cv_data=False,
                persist_model_reprs=False,
                persist_best_model=False,
                persist_partition=False,
                persist_model_selector_results=False,
                visualize_success=False,
                executor=executor,
            )
            assert state.is_successful()

            results = select_model_general(
                df=train_data,
                grid_search=grid_search,
                target_col_name="Quantity",
                frequency="D",
                partition_columns=["Product"],
                parallel_over_columns=parallel_columns,
                executor=executor,
                include_rules=None,
                exclude_rules=None,
                country_code_column="Holidays_code",
                output_path="",
                persist_cv_results=False,
                persist_cv_data=False,
                persist_model_reprs=False,
                persist_best_model=False,
                persist_partition=False,
                persist_model_selector_results=False,
            )

            assert len(results) == len(
                train_data[parallel_columns + ["Product"]].drop_duplicates())
            assert isinstance(results[0], ModelSelectorResult)

            if executor_name == "dask_already_running":
                client.shutdown()

        if client.status != "closed":
            client.shutdown()