async def test_start():
    with dask.config.set({
            'labextension.defaults.kwargs': {
                'processes': False
            },  # for speed
            'labextension.initial': [],
    }):
        async with DaskClusterManager() as manager:
            # add cluster
            model = await manager.start_cluster()
            assert not model.get('adapt')

            # close cluster
            assert len(manager.list_clusters()) == 1
            await manager.close_cluster(model['id'])

            # add cluster with adaptive configuration
            model = await manager.start_cluster(
                configuration={'adapt': {
                    'minimum': 1,
                    'maximum': 3
                }})
            assert model['adapt'] == {'minimum': 1, 'maximum': 3}

            await manager.close()
async def test_scale():
    with dask.config.set({
            'labextension.defaults.kwargs': {
                'processes': False
            },  # for speed
            'labextension.initial': [],
    }):
        async with DaskClusterManager() as manager:
            # add cluster with number of workers configuration
            model = await manager.start_cluster(configuration={'workers': 3})
            start = time()
            while model['workers'] != 3:
                await sleep(0.01)
                model = manager.get_cluster(model['id'])
                assert time() < start + 10, model['workers']

            await sleep(0.2)  # let workers settle # TODO: remove need for this

            # rescale the cluster
            model = manager.scale_cluster(model['id'], 6)
            start = time()
            while model['workers'] != 6:
                await sleep(0.01)
                model = manager.get_cluster(model['id'])
                assert time() < start + 10, model['workers']
async def test_get():
    with dask.config.set(config):
        async with DaskClusterManager() as manager:
            # start a cluster
            model = await manager.start_cluster()

            # return None if a nonexistent cluster is requested
            assert not manager.get_cluster('fake')

            # get the cluster by id
            assert model == manager.get_cluster(model['id'])
async def test_adapt():
    with dask.config.set(config):
        async with DaskClusterManager() as manager:
            # add a new cluster
            model = await manager.start_cluster()
            assert not model.get('adapt')
            model = manager.adapt_cluster(model['id'], 0, 4)
            adapt = model.get('adapt')
            assert adapt
            assert adapt['minimum'] == 0
            assert adapt['maximum'] == 4
async def test_close():
    with dask.config.set(config):
        async with DaskClusterManager() as manager:
            # start a cluster
            model = await manager.start_cluster()

            # return None if a nonexistent cluster is closed
            assert not await manager.close_cluster('fake')

            # close the cluster
            await manager.close_cluster(model['id'])
            assert not manager.list_clusters()
async def test_initial():
    with dask.config.set({
        'labextension': {
        "initial": [{"name": "foo"}],
        "default": {},
        'factory': {
            "module": "dask.distributed",
            "class": "LocalCluster",
            "kwargs": {"processes": False},
            "args": []
        }
    }
        }):
        # Test asynchronous starting of clusters via a context
        async with DaskClusterManager() as manager:
            clusters = manager.list_clusters()
            assert len(clusters) == 1
            assert clusters[0]["name"] == 'foo'

        # Test asynchronous starting of clusters outside of a context
        manager = DaskClusterManager()
        assert len(manager.list_clusters()) == 0
        await manager
        clusters = manager.list_clusters()
        assert len(clusters) == 1
        assert clusters[0]["name"] == 'foo'
        await manager.close()

        manager = await DaskClusterManager()
        clusters = manager.list_clusters()
        assert len(clusters) == 1
        assert clusters[0]["name"] == 'foo'
        await manager.close()
async def test_initial():
    with dask.config.set({
            'labextension.defaults.kwargs': {
                'processes': False
            },  # for speed
            'labextension.initial': [{
                'name': 'foo'
            }],
    }):
        # Test asynchronous starting of clusters via a context
        async with DaskClusterManager() as manager:
            clusters = manager.list_clusters()
            assert len(clusters) == 1
            assert clusters[0]["name"] == 'foo'

        # Test asynchronous starting of clusters outside of a context
        manager = DaskClusterManager()
        assert len(manager.list_clusters()) == 0
        await manager
        clusters = manager.list_clusters()
        assert len(clusters) == 1
        assert clusters[0]["name"] == 'foo'
        await manager.close()

        manager = await DaskClusterManager()
        clusters = manager.list_clusters()
        assert len(clusters) == 1
        assert clusters[0]["name"] == 'foo'
        await manager.close()
async def test_list():
    with dask.config.set(config):
        async with DaskClusterManager() as manager:
            # start with an empty list
            assert not manager.list_clusters()
            # start clusters
            model1 = await manager.start_cluster()
            model2 = await manager.start_cluster()

            models = manager.list_clusters()
            assert len(models) == 2
            assert model1 in models
            assert model2 in models
async def test_get():
    with dask.config.set({
            'labextension.defaults.kwargs': {
                'processes': False
            },  # for speed
            'labextension.initial': [],
    }):
        async with DaskClusterManager() as manager:
            # start a cluster
            model = await manager.start_cluster()

            # return None if a nonexistent cluster is requested
            assert not manager.get_cluster('fake')

            # get the cluster by id
            assert model == manager.get_cluster(model['id'])
async def test_adapt():
    with dask.config.set({
            'labextension.defaults.kwargs': {
                'processes': False
            },  # for speed
            'labextension.initial': [],
    }):
        async with DaskClusterManager() as manager:
            # add a new cluster
            model = await manager.start_cluster()
            assert not model.get('adapt')
            model = manager.adapt_cluster(model['id'], 0, 4)
            adapt = model.get('adapt')
            assert adapt
            assert adapt['minimum'] == 0
            assert adapt['maximum'] == 4
async def test_start():
    with dask.config.set(config):
        async with DaskClusterManager() as manager:
            # add cluster
            model = await manager.start_cluster()
            assert not model.get('adapt')

            # close cluster
            assert len(manager.list_clusters()) == 1
            await manager.close_cluster(model['id'])

            # add cluster with adaptive configuration
            model = await manager.start_cluster(
                configuration={'adapt': {'minimum': 1, 'maximum': 3}}
            )
            assert model['adapt'] == {'minimum': 1, 'maximum': 3}

            await manager.close()
async def test_list():
    with dask.config.set({
            'labextension.defaults.kwargs': {
                'processes': False
            },  # for speed
            'labextension.initial': [],
    }):
        async with DaskClusterManager() as manager:
            # start with an empty list
            assert not manager.list_clusters()
            # start clusters
            model1 = await manager.start_cluster()
            model2 = await manager.start_cluster()

            models = manager.list_clusters()
            assert len(models) == 2
            assert model1 in models
            assert model2 in models
async def test_scale():
    with dask.config.set(config):
        async with DaskClusterManager() as manager:
            # add cluster with number of workers configuration
            model = await manager.start_cluster(configuration={'workers': 3})
            start = time()
            while model['workers'] != 3:
                await sleep(0.01)
                model = manager.get_cluster(model['id'])
                assert time() < start + 10, model['workers']

            await sleep(0.2)  # let workers settle # TODO: remove need for this

            # rescale the cluster
            model = await manager.scale_cluster(model['id'], 6)
            start = time()
            while model['workers'] != 6:
                await sleep(0.01)
                model = manager.get_cluster(model['id'])
                assert time() < start + 10, model['workers']