def main(args): cfg = setup_cfg(args) if cfg.SEED >= 0: print('Setting fixed seed: {}'.format(cfg.SEED)) set_random_seed(cfg.SEED) setup_logger(cfg.OUTPUT_DIR) if torch.cuda.is_available() and cfg.USE_CUDA: torch.backends.cudnn.benchmark = True print_args(args, cfg) print('Collecting env info ...') print('** System info **\n{}\n'.format(collect_env_info())) trainer = build_trainer(cfg) # Uncomment the following lines to do extract embedding features #print('Running vis()') #trainer.vis() #return if args.eval_only: trainer.load_model(args.model_dir, epoch=args.load_epoch) trainer.test() return if not args.no_train: trainer.train()
def main(args): cfg = setup_cfg(args) set_random_seed(cfg.SEED) setup_logger(cfg.OUTPUT_DIR) if torch.cuda.is_available() and cfg.USE_CUDA: torch.backends.cudnn.benchmark = True print_args(args, cfg) print('Collecting env info ...') print('** System info **\n{}\n'.format(collect_env_info())) trainer = build_trainer(cfg) model = trainer.model model_dict = model.state_dict() for k, v in model_dict.items(): print(k)
def main(args): cfg = setup_cfg(args) set_random_seed(cfg.SEED) setup_logger(cfg.OUTPUT_DIR) if torch.cuda.is_available() and cfg.USE_CUDA: torch.backends.cudnn.benchmark = True print_args(args, cfg) print('Collecting env info ...') print('** System info **\n{}\n'.format(collect_env_info())) trainer = build_trainer(cfg) if args.eval_only: trainer.load_model(args.model_dir, epoch=args.load_epoch) trainer.test() return if not args.no_train: trainer.train()