from utils.general import LearningRateScheduler, load_weights_from_snapshot from tqdm import tqdm # training parameters train_para = { 'lr': [1e-5, 1e-6, 1e-7], 'lr_iter': [20000, 30000], 'max_iter': 40000, 'show_loss_freq': 1000, 'snapshot_freq': 5000, 'snapshot_dir': 'snapshots_handsegnet' } # get dataset dataset = BinaryDbReader(mode='training', batch_size=4, shuffle=True, hue_aug=True, random_crop_to_size=True) # build network graph data = dataset.get() # build network evaluation = tf.placeholder_with_default(True, shape=()) net = ColorHandPose3DNetwork() hand_mask_pred = net.inference_detection(data['image'], train=True) # Start TF gpu_options = tf.GPUOptions(allow_growth=True, ) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) tf.train.start_queue_runners(sess=sess)
from utils.general import LearningRateScheduler, load_weights_from_snapshot # entrenamiento parameters train_para = { 'lr': [1e-5, 1e-6, 1e-7], 'lr_iter': [20000, 30000], 'max_iter': 40000, 'show_loss_freq': 1000, 'snapshot_freq': 5000, 'snapshot_dir': 'snapshots_handsegnet' } # get dataset dataset = BinaryDbReader(mode='entrenamiento', batch_size=8, shuffle=True, hue_aug=True, random_crop_to_size=True) # build network graph data = dataset.get() # build network evaluation = tf.placeholder_with_default(True, shape=()) net = ColorHandPose3DNetwork() hand_mask_pred = net.inference_detection(data['image'], train=True) # Start TF gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) tf.train.start_queue_runners(sess=sess)
# training parameters train_para = { 'lr': [1e-4, 1e-5, 1e-6], 'lr_iter': [10000, 20000], 'max_iter': 30000, 'show_loss_freq': 1000, 'snapshot_freq': 5000, 'snapshot_dir': 'snapshots_posenet' } # get dataset dataset = BinaryDbReader(mode='training', batch_size=8, shuffle=True, use_wrist_coord=False, hand_crop=True, coord_uv_noise=True, crop_center_noise=True) # build network graph data = dataset.get() # build network evaluation = tf.compat.v1.placeholder_with_default(True, shape=()) net = ColorHandPose3DNetwork() keypoints_scoremap = net.inference_pose2d(data['image_crop'], train=True) s = data['scoremap'].get_shape().as_list() keypoints_scoremap = [ tf.image.resize(x, (s[1], s[2])) for x in keypoints_scoremap ]
# entrenamiento parameters train_para = { 'lr': [1e-5, 1e-6], 'lr_iter': [60000], 'max_iter': 80000, 'show_loss_freq': 1000, 'snapshot_freq': 5000, 'snapshot_dir': 'snapshots_lifting_%s' % VARIANT } # get dataset dataset = BinaryDbReader(mode='entrenamiento', batch_size=8, shuffle=True, hand_crop=True, use_wrist_coord=False, coord_uv_noise=True, crop_center_noise=True, crop_offset_noise=True, crop_scale_noise=True) # build network graph data = dataset.get() # build network net = PosePriorNetwork(VARIANT) # feed trough network evaluation = tf.placeholder_with_default(True, shape=()) _, coord3d_pred, R = net.inference(data['scoremap'], data['hand_side'], evaluation)