常数定义
    '''
    file_name = "File_Directory/results/{}.json".format(app_name)
    new_data_name = "{}_re_predict_data".format(app_name)
    new_result_name = "{}_re_predict_out".format(app_name)
    final_result_name = "{}_final_out".format(app_name)
    threshold = args["re_predict_threshold"]
    mix_rate = args['re_predict_mix_rate']
    decay_rate = args['re_predict_decay_rate']
    select_threshold = args['re_predict_select_threshold']
    '''
    预测过程
    '''
    datasets = Dataset(logger=logger, args=param.get_config(param.DATASET))
    datasets.load_examples()
    trainset, validset, testset = datasets.get_split()

    predict_preprocess = PreProcess(logger=logger,
                                    args=param.get_config(param.DATASET),
                                    examples=testset,
                                    for_prediction=True)
    predict_preprocess.prepare_batch_data(cache_filename="")
    predict_vocab_size = predict_preprocess.get_vocab_size()
    predict_batch_reader = predict_preprocess.batch_generator()

    predict_engine = PredictEngine(param=param, logger=logger, vocab_size=1)
    predict_engine.init_model(vocab_size=predict_vocab_size)

    predict_engine.predict(predict_batch_reader)
    example_info = util_tool.trans_exam_list_to_colum(testset)
    predict_engine.write_full_info(attach_data=example_info)
    app_name = args["app_name"]

    # corpus_cleaner = Corpus_cleaner()
    # # corpus_cleaner.read_from_json("pretrain_corpus.json")
    # corpus_cleaner.read_from_src()
    # docs = corpus_cleaner.get_docs()
    # for i in range(10):
    #     print(docs[i])
    #     print("###########################################################")

    # 读取数据集
    datasets = Dataset(logger=logger, args=param.get_config(param.DATASET))
    # datasets.read_dataset(div_nums=[7, 2, 1])
    datasets.load_examples()
    trainset, validset, testset = datasets.get_split()  # 这三个函数要修改,split应该检查是否已分割
    # datasets.save_example()

    # 训练数据预处理
    train_preprocess = PreProcess(logger=logger, args=param.get_config(param.DATASET), examples=trainset,
                                  feature_file_name='train_feature_for_multi_task')
    train_preprocess.convert_examples_to_features()
    train_vocab_size = train_preprocess.get_vocab_size()
    train_batch_reader = train_preprocess.batch_generator()
    # 验证数据预处理
    valid_preprocess = PreProcess(logger=logger, args=param.get_config(param.DATASET), examples=validset,
                                  feature_file_name='valid_feature_for_multi_task')
    valid_preprocess.convert_examples_to_features()
    valid_vocab_size = valid_preprocess.get_vocab_size()
    valid_batch_reader = valid_preprocess.batch_generator()