Exemple #1
0
    def __getitem__(self, index):
        self.A, self.B, self.I, seq_idx = self.update_frame_idx(self.A_paths, index)
        tG = self.opt.n_frames_G
              
        A_img = Image.open(self.A_paths[seq_idx][0]).convert('RGB')        
        params = get_img_params(self.opt, A_img.size)
        transform_scaleB = get_transform(self.opt, params)
        transform_scaleA = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) if self.A_is_label else transform_scaleB
        frame_range = list(range(tG)) if self.A is None else [tG-1]
           
        for i in frame_range:                                                   
            A_path = self.A_paths[seq_idx][self.frame_idx + i]            
            Ai = self.get_image(A_path, transform_scaleA, is_label=self.A_is_label)            
            self.A = concat_frame(self.A, Ai, tG)

            if self.use_real:
                B_path = self.B_paths[seq_idx][self.frame_idx + i]
                Bi = self.get_image(B_path, transform_scaleB)                
                self.B = concat_frame(self.B, Bi, tG)
            else:
                self.B = 0

            if self.opt.use_instance:
                I_path = self.I_paths[seq_idx][self.frame_idx + i]
                Ii = self.get_image(I_path, transform_scaleA) * 255.0                
                self.I = concat_frame(self.I, Ii, tG)
            else:
                self.I = 0

        self.frame_idx += 1        
        return_list = {'A': self.A, 'B': self.B, 'inst': self.I, 'A_path': A_path, 'change_seq': self.change_seq}
        return return_list
Exemple #2
0
    def __getitem__(self, index):
        TParsing, SPose, SParsing, SFG, seq_idx = self.update_frame_idx_parser(
            self.sparsing_paths, index)
        sparsing_paths = self.sparsing_paths[seq_idx]
        sfg_paths = self.sfg_paths[seq_idx]
        n_frames_total, start_idx, t_step = get_video_params(
            self.opt, self.n_frames_total, len(sparsing_paths), self.frame_idx)

        sparsing = Image.open(sparsing_paths[start_idx])
        sfg = Image.open(sfg_paths[start_idx]).convert('RGB')
        size = sfg.size

        BigSizeFlag = True
        if size[0] / size[1] > 1:
            BigSizeFlag = True
        else:
            BigSizeFlag = False

        if BigSizeFlag:
            params = get_img_params(self.opt, (1920, 1080))
        else:
            params = get_img_params(self.opt, size)

        tparsing_path = self.tparsing_paths[seq_idx][0]

        TParsing = self.get_TImage(tparsing_path, size, params, BigSizeFlag)
        TParsing = self.crop(TParsing)

        frame_range = list(range(n_frames_total)) if (
            self.opt.isTrain
            or self.TPose is None) else [self.opt.n_frames_G - 1]
        for i in frame_range:
            sparsing_path = sparsing_paths[start_idx + i * t_step]
            spose_path = self.spose_paths[seq_idx][start_idx + i * t_step]
            sfg_path = sfg_paths[start_idx + i * t_step]

            SPose_i, SParsing_i, SFG_i = self.get_SImage(
                spose_path, sparsing_path, sfg_path, size, params, BigSizeFlag)

            SParsing_i = self.crop(SParsing_i)
            SPose_i = self.crop(SPose_i)
            SFG_i = self.crop(SFG_i)

            SPose = concat_frame(SPose, SPose_i, n_frames_total)
            SParsing = concat_frame(SParsing, SParsing_i, n_frames_total)
            SFG = concat_frame(SFG, SFG_i, n_frames_total)

        if not self.opt.isTrain:
            self.TParsing, self.SPose, self.SParsing, self.SFG = TParsing, SPose, SParsing, SFG
            self.frame_idx += 1
        change_seq = False if self.opt.isTrain else self.change_seq
        return_list = {
            'TParsing': TParsing,
            'SPose': SPose,
            'SParsing': SParsing,
            'SFG': SFG,
            'A_path': sparsing_path,
            'change_seq': change_seq
        }
        return return_list
Exemple #3
0
    def __getitem__(self, index):
        A, B, _, seq_idx = self.update_frame_idx(self.img_paths, index)
        img_paths = self.img_paths[seq_idx]
        n_frames_total, start_idx, t_step = get_video_params(
            self.opt, self.n_frames_total, len(img_paths), self.frame_idx)

        img = Image.open(img_paths[start_idx]).convert('RGB')
        size = img.size
        params = get_img_params(self.opt, size)

        frame_range = list(range(n_frames_total)) if (
            self.opt.isTrain or self.A is None) else [self.opt.n_frames_G - 1]
        for i in frame_range:
            img_path = img_paths[start_idx + i * t_step]
            if not self.opt.openpose_only:
                dp_path = self.dp_paths[seq_idx][start_idx + i * t_step]
                Di = self.get_image(dp_path,
                                    size,
                                    params,
                                    input_type='densepose')
                Di[2, :, :] = (
                    (Di[2, :, :] * 0.5 + 0.5) * 255 / 24 - 0.5) / 0.5
            if not self.opt.densepose_only:
                op_path = self.op_paths[seq_idx][start_idx + i * t_step]
                Oi = self.get_image(op_path,
                                    size,
                                    params,
                                    input_type='openpose')

            if self.opt.openpose_only:
                Ai = Oi
            elif self.opt.densepose_only:
                Ai = Di
            else:
                Ai = torch.cat([Di, Oi])
            Bi = self.get_image(img_path, size, params, input_type='img')

            Ai, Bi = self.crop(Ai), self.crop(
                Bi)  # only crop the central half region to save time
            A = concat_frame(A, Ai, n_frames_total)
            B = concat_frame(B, Bi, n_frames_total)

        if not self.opt.isTrain:
            self.A, self.B = A, B
            self.frame_idx += 1
        change_seq = False if self.opt.isTrain else self.change_seq
        return_list = {
            'A': A,
            'B': B,
            'inst': 0,
            'A_path': img_path,
            'change_seq': change_seq
        }

        return return_list
Exemple #4
0
    def __getitem__(self, index):
        A, B, I, seq_idx = self.update_frame_idx(self.A_paths, index)
        A_paths = self.A_paths[seq_idx]
        B_paths = self.B_paths[seq_idx]
        n_frames_total, start_idx, t_step = get_video_params(
            self.opt, self.n_frames_total, len(A_paths), self.frame_idx)

        B_img = Image.open(B_paths[0]).convert('RGB')
        B_size = B_img.size
        points = np.loadtxt(A_paths[0], delimiter=',')
        is_first_frame = self.opt.isTrain or not hasattr(self, 'min_x')
        if is_first_frame:  # crop only the face region
            self.get_crop_coords(points, B_size)
        params = get_img_params(self.opt, self.crop(B_img).size)
        transform_scaleA = get_transform(self.opt,
                                         params,
                                         method=Image.BILINEAR,
                                         normalize=False)
        transform_label = get_transform(self.opt,
                                        params,
                                        method=Image.NEAREST,
                                        normalize=False)
        transform_scaleB = get_transform(self.opt, params)

        # read in images
        frame_range = list(range(n_frames_total)) if self.A is None else [
            self.opt.n_frames_G - 1
        ]
        for i in frame_range:
            A_path = A_paths[start_idx + i * t_step]
            B_path = B_paths[start_idx + i * t_step]
            B_img = Image.open(B_path)
            Ai, Li = self.get_face_image(A_path, transform_scaleA,
                                         transform_label, B_size, B_img)
            Bi = transform_scaleB(self.crop(B_img))
            A = concat_frame(A, Ai, n_frames_total)
            B = concat_frame(B, Bi, n_frames_total)
            I = concat_frame(I, Li, n_frames_total)

        if not self.opt.isTrain:
            self.A, self.B, self.I = A, B, I
            self.frame_idx += 1
        change_seq = False if self.opt.isTrain else self.change_seq
        return_list = {
            'A': A,
            'B': B,
            'inst': I,
            'A_path': A_path,
            'change_seq': change_seq
        }

        return return_list
Exemple #5
0
    def __getitem__(self, index):
        TParsing, TFG, SPose, SParsing, SFG, SFG_full, BG, BG_flag, SI, seq_idx = self.update_frame_idx_composer(
            self.simg_paths, index)
        simg_paths = self.simg_paths[seq_idx]
        n_frames_total, start_idx, t_step = get_video_params(
            self.opt, self.n_frames_total, len(simg_paths), self.frame_idx)

        simg = Image.open(simg_paths[start_idx]).convert('RGB')
        size = simg.size

        BigSizeFlag = True
        if size[0] / size[1] > 1:
            BigSizeFlag = True
        else:
            BigSizeFlag = False

        if BigSizeFlag:
            params = get_img_params(self.opt, (1920, 1080))
        else:
            params = get_img_params(self.opt, size)

        tparsing_path = self.tparsing_paths[seq_idx][0]
        timg_path = self.timg_paths[seq_idx][0]

        video_name = timg_path[timg_path.rfind('video'):timg_path.rfind('/timg'
                                                                        )]
        bg_path = self.dir_bg + '/' + video_name + '.jpg'
        BG_i, BG_flag = self.get_bg_image(bg_path, size, params, BigSizeFlag)

        TParsing, TFG = self.get_TImage(tparsing_path, timg_path, size, params,
                                        BigSizeFlag)
        TParsing, TFG = self.crop(TParsing), self.crop(TFG)

        frame_range = list(range(n_frames_total)) if (
            self.opt.isTrain
            or self.TPose is None) else [self.opt.n_frames_G - 1]
        for i in frame_range:
            simg_path = simg_paths[start_idx + i * t_step]
            sfg_path = self.sfg_paths[seq_idx][start_idx + i * t_step]
            spose_path = self.spose_paths[seq_idx][start_idx + i * t_step]
            sparsing_path = self.sparsing_paths[seq_idx][start_idx +
                                                         i * t_step]

            SPose_i, SParsing_i, SFG_i, SFG_full_i, SI_i = self.get_SImage(
                spose_path, sparsing_path, sfg_path, simg_path, size, params,
                BigSizeFlag)

            SParsing_i = self.crop(SParsing_i)
            SFG_i = self.crop(SFG_i)
            SPose_i, SFG_full_i, SI_i = self.crop(SPose_i), self.crop(
                SFG_full_i), self.crop(SI_i)

            SPose = concat_frame(SPose, SPose_i, n_frames_total)
            SParsing = concat_frame(SParsing, SParsing_i, n_frames_total)
            SFG = concat_frame(SFG, SFG_i, n_frames_total)
            SFG_full = concat_frame(SFG_full, SFG_full_i, n_frames_total)
            SI = concat_frame(SI, SI_i, n_frames_total)
            BG = concat_frame(BG, BG_i, n_frames_total)

        if not self.opt.isTrain:
            self.TParsing, self.TFG, self.SPose, self.SParsing, self.SFG, self.SFG_full, self.BG, self.BG_flag, self.SI = TParsing, TFG, SPose, SParsing, SFG, SFG_full, BG, BG_flag, SI
            self.frame_idx += 1
        change_seq = False if self.opt.isTrain else self.change_seq
        return_list = {
            'TParsing': TParsing,
            'TFG': TFG,
            'SPose': SPose,
            'SParsing': SParsing,
            'SFG': SFG,
            'SFG_full': SFG_full,
            'BG': BG,
            'BG_flag': BG_flag,
            'SI': SI,
            'A_path': simg_path,
            'change_seq': change_seq
        }
        return return_list