def loadSequence(self, seqName, Nmax=float('inf'), shuffle=False, rng=None, docom=False, cube=None, hand=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. train :param Nmax: maximum number of samples to load :return: returns named image sequence """ if cube is None: config = {'cube': self.default_cubes[seqName]} else: assert isinstance(cube, tuple) assert len(cube) == 3 config = {'cube': cube} pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.allJoints, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) if self.useCache: if os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) self.loadRefineNetLazy(self.refineNet) # Load the dataset objdir = '{}/{}/'.format(self.basepath, seqName) trainlabels = '{}/{}/joint_data.mat'.format(self.basepath, seqName) mat = scipy.io.loadmat(trainlabels) names = mat['joint_names'][0] joints3D = mat['joint_xyz'][0] joints2D = mat['joint_uvd'][0] if self.allJoints: eval_idxs = np.arange(36) else: eval_idxs = self.restrictedJointsEval self.numJoints = len(eval_idxs) txt = 'Loading {}'.format(seqName) pbar = pb.ProgressBar(maxval=joints3D.shape[0], widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() data = [] i=0 for line in range(joints3D.shape[0]): dptFileName = '{0:s}/depth_1_{1:07d}.png'.format(objdir, line+1) if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) i += 1 continue dpt = self.loadDepthMap(dptFileName) if hand is not None: raise NotImplementedError() # joints in image coordinates gtorig = np.zeros((self.numJoints, 3), np.float32) jt = 0 for ii in range(joints2D.shape[1]): if ii not in eval_idxs: continue gtorig[jt, 0] = joints2D[line, ii, 0] gtorig[jt, 1] = joints2D[line, ii, 1] gtorig[jt, 2] = joints2D[line, ii, 2] jt += 1 # normalized joints in 3D coordinates gt3Dorig = np.zeros((self.numJoints, 3), np.float32) jt = 0 for jj in range(joints3D.shape[1]): if jj not in eval_idxs: continue gt3Dorig[jt, 0] = joints3D[line, jj, 0] gt3Dorig[jt, 1] = joints3D[line, jj, 1] gt3Dorig[jt, 2] = joints3D[line, jj, 2] jt += 1 # print gt3D # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,gt3Dorig,0,dptFileName,'','')) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, refineNet=self.refineNet, importer=self) if not hd.checkImage(1): print("Skipping image {}, no content".format(dptFileName)) i += 1 continue try: dpt, M, com = hd.cropArea3D(com=gtorig[self.crop_joint_idx], size=config['cube'], docom=docom) except UserWarning: print("Skipping image {}, no hand detected".format(dptFileName)) continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = transformPoints2D(gtorig, M) # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','')) data.append(DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, '', self.sides[seqName], {})) pbar.update(i) i += 1 # early stop if len(data) >= Nmax: break pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config)
def loadSequence(self, seqName, subSeq=None, Nmax=float('inf'), shuffle=False, rng=None, docom=False, cube=None, hand=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. train :param subSeq: list of subsequence names, e.g. 0, 45, 122-5 :param Nmax: maximum number of samples to load :return: returns named image sequence """ if (subSeq is not None) and (not isinstance(subSeq, list)): raise TypeError("subSeq must be None or list") if cube is None: config = {'cube': self.default_cubes[seqName]} else: assert isinstance(cube, tuple) assert len(cube) == 3 config = {'cube': cube} if subSeq is None: pickleCache = '{}/{}_{}_None_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) else: pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, ''.join(subSeq), HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) if self.useCache: if os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) # check for multiple subsequences if subSeq is not None: if len(subSeq) > 1: missing = False for i in range(len(subSeq)): if not os.path.isfile('{}/{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, subSeq[i], HandDetector.detectionModeToString(docom, self.refineNet is not None))): missing = True print("missing: {}".format(subSeq[i])) break if not missing: # load first data pickleCache = '{}/{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, subSeq[0], HandDetector.detectionModeToString(docom, self.refineNet is not None)) print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, fullData, config) = cPickle.load(f) f.close() # load rest of data for i in range(1, len(subSeq)): pickleCache = '{}/{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, subSeq[i], HandDetector.detectionModeToString(docom, self.refineNet is not None)) print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) fullData.extend(data) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(fullData) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, fullData[0:Nmax], config) else: return NamedImgSequence(seqName, fullData, config) self.loadRefineNetLazy(self.refineNet) # Load the dataset objdir = '{}/Depth/'.format(self.basepath) trainlabels = '{}/{}.txt'.format(self.basepath, seqName) inputfile = open(trainlabels) txt = 'Loading {}'.format(seqName) pbar = pb.ProgressBar(maxval=len(inputfile.readlines()), widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() inputfile.seek(0) data = [] i = 0 for line in inputfile: # early stop if len(data) >= Nmax: break part = line.split(' ') # check for subsequences and skip them if necessary subSeqName = '' if subSeq is not None: p = part[0].split('/') # handle original data (unrotated '0') separately if ('0' in subSeq) and len(p[0]) > 6: pass elif not('0' in subSeq) and len(p[0]) > 6: i += 1 continue elif (p[0] in subSeq) and len(p[0]) <= 6: pass elif not(p[0] in subSeq) and len(p[0]) <= 6: i += 1 continue if len(p[0]) <= 6: subSeqName = p[0] else: subSeqName = '0' dptFileName = '{}/{}'.format(objdir, part[0]) if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) i += 1 continue dpt = self.loadDepthMap(dptFileName) if hand is not None: raise NotImplementedError() # joints in image coordinates gtorig = np.zeros((self.numJoints, 3), np.float32) for joint in range(self.numJoints): for xyz in range(0, 3): gtorig[joint, xyz] = part[joint*3+xyz+1] # normalized joints in 3D coordinates gt3Dorig = self.jointsImgTo3D(gtorig) # print gt3D # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,gt3Dcrop,0,dptFileName,subSeqName,'')) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, refineNet=self.refineNet, importer=self) if not hd.checkImage(1): print("Skipping image {}, no content".format(dptFileName)) i += 1 continue try: dpt, M, com = hd.cropArea3D(com=gtorig[self.crop_joint_idx], size=config['cube'], docom=docom) except UserWarning: print("Skipping image {}, no hand detected".format(dptFileName)) continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = transformPoints2D(gtorig, M) # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,subSeqName,'')) data.append(DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, subSeqName, 'left', {})) pbar.update(i) i += 1 inputfile.close() pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config)
def loadSequence(self, seqName, subSeq=None, Nmax=float('inf'), shuffle=False, rng=None, docom=False, cube=None, hand=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. subject1 :param Nmax: maximum number of samples to load :return: returns named image sequence """ if (subSeq is not None) and (not isinstance(subSeq, list)): raise TypeError("subSeq must be None or list") if cube is None: config = {'cube': self.default_cubes[seqName]} else: assert isinstance(cube, tuple) assert len(cube) == 3 config = {'cube': cube} if subSeq is None: pickleCache = '{}/{}_{}_None_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) else: pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, ''.join(subSeq), HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) if self.useCache & os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) self.loadRefineNetLazy(self.refineNet) # Load the dataset objdir = '{}/{}/'.format(self.basepath, seqName) subdirs = sorted([name for name in os.listdir(objdir) if os.path.isdir(os.path.join(objdir, name))]) txt = 'Loading {}'.format(seqName) nImgs = sum([len(files) for r, d, files in os.walk(objdir)]) // 2 pbar = pb.ProgressBar(maxval=nImgs, widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() data = [] pi = 0 for subdir in subdirs: # check for subsequences and skip them if necessary subSeqName = '' if subSeq is not None: if subdir not in subSeq: continue subSeqName = subdir # iterate all subdirectories trainlabels = '{}/{}/joint.txt'.format(objdir, subdir) inputfile = open(trainlabels) # read number of samples nImgs = int(inputfile.readline()) for i in range(nImgs): # early stop if len(data) >= Nmax: break line = inputfile.readline() part = line.split(' ') dptFileName = '{}/{}/{}_depth.bin'.format(objdir, subdir, str(i).zfill(6)) if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) continue dpt = self.loadDepthMap(dptFileName) if hand is not None: raise NotImplementedError() # joints in image coordinates gt3Dorig = np.zeros((self.numJoints, 3), np.float32) for joint in range(gt3Dorig.shape[0]): for xyz in range(0, 3): gt3Dorig[joint, xyz] = part[joint*3+xyz] # invert axis # gt3Dorig[:, 0] *= (-1.) # gt3Dorig[:, 1] *= (-1.) gt3Dorig[:, 2] *= (-1.) # normalized joints in 3D coordinates gtorig = self.joints3DToImg(gt3Dorig) # print gt3D # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','')) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, refineNet=self.refineNet, importer=self) if not hd.checkImage(1.): print("Skipping image {}, no content".format(dptFileName)) continue try: dpt, M, com = hd.cropArea3D(com=gtorig[self.crop_joint_idx], size=config['cube'], docom=docom) except UserWarning: print("Skipping image {}, no hand detected".format(dptFileName)) continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = transformPoints2D(gtorig, M) # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','',{})) data.append(DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, subSeqName, self.sides[seqName], {})) pbar.update(pi) pi += 1 inputfile.close() pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config)
def loadSequence(self, seqName, camera=None, Nmax=float('inf'), shuffle=False, rng=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. subject1 :param Nmax: maximum number of samples to load :return: returns named image sequence """ config = {'cube': (220, 220, 220)} pickleCache = '{}/{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, camera) if self.useCache & os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not (np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) # Load the dataset objdir = os.path.join(self.basepath, seqName) if camera is not None: dflt = "c{0:02d}_*.npy".format(camera) else: dflt = '*.npy' dptFiles = sorted([ os.path.join(dirpath, f) for dirpath, dirnames, files in os.walk(objdir) for f in fnmatch.filter(files, dflt) ]) # dptFiles = sorted(glob.glob(os.path.join(objdir, '*exr'))) if camera is not None: lflt = "c{0:02d}_*anno_blender.txt".format(camera) else: lflt = '*anno_blender.txt' labelFiles = sorted([ os.path.join(dirpath, f) for dirpath, dirnames, files in os.walk(objdir) for f in fnmatch.filter(files, lflt) ]) #labelFiles = sorted(glob.glob(os.path.join(objdir, '*txt'))) # sync lists newdpt = [] newlbl = [] if camera is not None: number_idx = 1 else: number_idx = 0 labelIdx = [ ''.join(os.path.basename(lbl).split('_')[number_idx]) for lbl in labelFiles ] for dpt in dptFiles: if ''.join( os.path.basename(dpt).split('_')[number_idx]) in labelIdx: newdpt.append(dpt) newlbl.append(labelFiles[labelIdx.index(''.join( os.path.basename(dpt).split('_')[number_idx]))]) dptFiles = newdpt labelFiles = newlbl assert len(dptFiles) == len(labelFiles) txt = 'Loading {}'.format(seqName) nImgs = len(dptFiles) pbar = pb.ProgressBar(maxval=nImgs, widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() data = [] for i in xrange(nImgs): labelFileName = labelFiles[i] dptFileName = dptFiles[i] if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) continue dpt = self.loadDepthMap(dptFileName) if not os.path.isfile(labelFileName): print("File {} does not exist!".format(labelFileName)) continue # joints in image coordinates gtorig = np.genfromtxt(labelFileName) gtorig = gtorig.reshape((gtorig.shape[0] / 3, 3)) gtorig[:, 2] *= 1000. # normalized joints in 3D coordinates gt3Dorig = self.jointsImgTo3D(gtorig) ### Shorting the tip bone, BUGFIX tips = [3, 8, 13, 18, 23] shrink_factor = 0.85 for joint_idx in tips: t = gt3Dorig[joint_idx, :] - gt3Dorig[joint_idx - 1, :] gt3Dorig[joint_idx, :] = gt3Dorig[joint_idx - 1, :] + shrink_factor * t gtorig = self.joints3DToImg(gt3Dorig) ### # print gtorig, gt3Dorig # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,0,0,dptFileName,'','',{})) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, importer=self) if not hd.checkImage(1.): print("Skipping image {}, no content".format(dptFileName)) continue try: dpt, M, com = hd.cropArea3D(gtorig[10], size=config['cube']) except UserWarning: print( "Skipping image {}, no hand detected".format(dptFileName)) continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = np.zeros((gt3Dorig.shape[0], 3), np.float32) for joint in range(gtcrop.shape[0]): t = transformPoint2D(gtorig[joint], M) gtcrop[joint, 0] = t[0] gtcrop[joint, 1] = t[1] gtcrop[joint, 2] = gtorig[joint, 2] # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','')) data.append( DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, '', self.sides[seqName], {})) pbar.update(i) # early stop if len(data) >= Nmax: break pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config)