#%% if __name__ == "__main__": print 'This file contains the Neural Network example' # Parameters and settings data_lag = 3 N_input_units = data_lag N_hidden_units = 8 N_output_units = 1 net_fit_repeat = 5 net_max_iter = 10000 net_best_err = 9e9 # Load the Sunspot dataset year, reading, lag_matrix = get_sunspot(data_lag) train, test = data_split(lag_matrix) # Repeat network fit to find the one with the lowest error net_best = None for net_fit_count in range(net_fit_repeat): net = NeuralNetwork(structure=(N_input_units - 1, N_hidden_units, N_output_units), train_input=train[:, 1:], train_target=train[:, 0], test_input=test[:, 1:], test_target=test[:, 0], max_iter=net_max_iter) net.train() if net.e_test[-1] < net_best_err:
#%% if __name__ == "__main__": print 'This file contains the Gaussian Process example' # Parameters and settings N_SIG2 = 20 N_BETA = 20 MAX_BETA = 1 MIN_BETA = 500 MAX_SIG2 = 2 MIN_SIG2 = 0.01 # Load the sunspot dataset lag = 5 year, reading, lag_matrix = get_sunspot(lag) empirical_var = np.var(lag_matrix[:, 0]) # Some statics (for later use) # Split data set into a train/test set train, test = data_split(lag_matrix) train_input = train[:, 1:] train_target = train[:, 0] test_input = test[:, 1:] test_target = test[:, 0] # Construct kernels K_train_train = kernel(train_input.T, train_input.T) K_test_train = kernel(test_input.T, train_input.T) K_test_test = kernel(test_input.T, test_input.T) """ Initialize the algorihm.
if __name__ == "__main__": print 'This file contains the Gaussian Process example' # Parameters and settings N_SIG2 = 20 N_BETA = 20 MAX_BETA = 1 MIN_BETA = 500 MAX_SIG2 = 2 MIN_SIG2 = 0.01 # Load the sunspot dataset lag = 5 year, reading, lag_matrix = get_sunspot(lag) empirical_var = np.var(lag_matrix[:, 0]) # Some statics (for later use) # Split data set into a train/test set train, test = data_split(lag_matrix) train_input = train[:,1:] train_target = train[:,0] test_input = test[:,1:] test_target = test[:,0] # Construct kernels K_train_train = kernel(train_input.T, train_input.T) K_test_train = kernel(test_input.T, train_input.T) K_test_test = kernel(test_input.T, test_input.T) """
#%% if __name__ == "__main__": print 'This file contains the Neural Network example' # Parameters and settings data_lag = 3 N_input_units = data_lag N_hidden_units = 8 N_output_units = 1 net_fit_repeat = 5 net_max_iter = 10000 net_best_err = 9e9 # Load the Sunspot dataset year, reading, lag_matrix = get_sunspot(data_lag) train, test = data_split(lag_matrix) # Repeat network fit to find the one with the lowest error net_best = None for net_fit_count in range(net_fit_repeat): net = NeuralNetwork(structure=(N_input_units-1, N_hidden_units, N_output_units), train_input=train[:, 1:], train_target=train[:, 0], test_input=test[:, 1:], test_target=test[:, 0], max_iter=net_max_iter) net.train() if net.e_test[-1] < net_best_err: net_best = net net_best_err = net.e_test[-1] # Train and output error print 'Minimum test MSE:', str(min(net_best.e_test))