Exemple #1
0
def make_dataset(path, input_fmt, res_type):
    net_path = os.path.join(path, 'net')
    res_path = os.path.join(path, res_type)
    if not os.path.exists(res_path):
        os.mkdir(res_path)
    data_set = GHData(path, net_path, input_fmt)
    data_set.load_x(x_ratio_thr=-1.0, dt_idx=False)
    data_set.load_y(res_type, na_value=-1.0)
    # data_set.drop_times(['00000027'])
    data_set.normalize()
    # data_set.column_valid = np.ones((data_set.input_data.shape[1],), dtype=np.bool)
    data_set.save_data(res_path)
    return data_set
Exemple #2
0
def make_dataset(path, out_path, input_fmt, res_type):
    data_set = GHData(path, path + "/net", input_fmt)
    data_set.load_x()
    data_set.load_y(res_type)
    data_set.normalize()
    data_set.save_data(out_path)
Exemple #3
0
    all_types = ['cct', 'sst', 'vs', 'v_curve']
    res_type = 'cct'
    res_name = res_type
    res_path = path + "/" + res_name
    input_dic = {'generator': ['p', 'v'], 'station': ['pl', 'ql']}

    dr_percs = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
    net_path = path + "/net"
    net = GHNet("inf", input_dic, dr_percs=dr_percs)
    net.load_net(net_path)
    net1 = GHNet("inf", input_dic, dr_percs=dr_percs)
    net1.load_net(net_path)

    data_set = GHData(path, net_path, net.input_layer)
    data_set.load_x(x_ratio_thr=-1.0)
    data_set.load_y(res_type)
    data_set.normalize()
    drops = np.array(range(len(data_set.column_valid)))[~data_set.column_valid]
    net.drop_inputs(drops)
    net1.drop_inputs(drops)

    n_batch = 16
    n_epochs = 10
    n_al_epochs = 10
    only_real = True
    y_columns = list(range(data_set.y.shape[1]))
    y_columns = [2, 11, 23]
    net.build_multi_reg_k(len(y_columns),
                          activation=tf.keras.layers.LeakyReLU())
    net1.build_multi_reg_k(len(y_columns),
Exemple #4
0
    net_path = os.path.join(path, 'net')
    res_type = 'cct'
    res_path = os.path.join(path, res_type)
    input_dic = {'generator': ['p'],
                 'load': ['p', 'q']}
    fmt = 'off'
    power = Power(fmt=fmt)
    power.load_power(net_path, fmt, lf=True, lp=False, st=False, station=True)
    input_layer = []
    for etype in input_dic:
        for dtype in input_dic[etype]:
            t = '_'.join((etype, dtype))
            input_layer.extend([(t, n) for n in power.data[etype]['name']])

    data_set = GHData(path, net_path, input_layer)
    data_set.load_x(x_ratio_thr=-1.0, dt_idx=False)
    data_set.load_y(res_type)
    data_set.normalize()
    data_set.column_valid = np.ones((data_set.input_data.shape[1], ), dtype=np.bool)
    """
    y_columns = list(range(data_set.y.shape[1]))
    column_names = data_set.y.columns[y_columns]
    print("targets:", column_names)

    prelu = tf.keras.layers.ReLU(negative_slope=0.1)
    x = Input(shape=(len(input_layer),), dtype='float32', name='x')
    fault = Input(shape=(len(y_columns),), dtype='float32', name='fault')
    y_ = Input(shape=(len(y_columns),), dtype='float32', name='y_')
    pre_model, all_layers = build_mlp(x, [64, 32, len(y_columns)], 'wepri36',
                                      activation=prelu, last_activation=prelu)
    feature_model = Model(x, all_layers[-2])