def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model()
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.get_seg_model() self.seg_net = RunnerHelper.load_net(self, self.seg_net) self.optimizer, self.scheduler = Trainer.init( self._get_parameters(), self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.loss = self.seg_model_manager.get_seg_loss() def _get_parameters(self): lr_1 = [] lr_10 = [] params_dict = dict(self.seg_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: lr_10.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('solver', 'lr')['base_lr'] }, { 'params': lr_10, 'lr': self.configer.get('solver', 'lr')['base_lr'] * 1.0 }] return params def train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() # Adjust the learning rate after every epoch. for i, data_dict in enumerate(self.train_loader): Trainer.update(self, warm_list=(0, ), solver_dict=self.configer.get('solver')) self.data_time.update(time.time() - start_time) # Forward pass. data_dict = RunnerHelper.to_device(self, data_dict) out = self.seg_net(data_dict) # Compute the loss of the train batch & backward. loss_dict = self.loss(out) loss = loss_dict['loss'] self.train_losses.update( {key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {4}\tLoss = {3}\n'.format( self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), self.train_losses.info(), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.runner_state['iters'] % self.configer.get('solver.save_iters') == 0 \ and self.configer.get('local_rank') == 0: RunnerHelper.save_net(self, self.seg_net) if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0 \ and not self.configer.get('network.distributed'): self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): data_dict = RunnerHelper.to_device(self, data_dict) with torch.no_grad(): # Forward pass. out = self.seg_net(data_dict) loss_dict = self.loss(out) # Compute the loss of the val batch. out_dict, _ = RunnerHelper.gather(self, out) self.val_losses.update( {key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self._update_running_score(out_dict['out'], DCHelper.tolist(data_dict['meta'])) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['performance'] = self.seg_running_score.get_mean_iou( ) self.runner_state['val_loss'] = self.val_losses.avg['loss'] RunnerHelper.save_net( self, self.seg_net, performance=self.seg_running_score.get_mean_iou(), val_loss=self.val_losses.avg['loss']) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss = {0}\n'.format(self.val_losses.info(), batch_time=self.batch_time)) Log.info('Mean IOU: {}\n'.format( self.seg_running_score.get_mean_iou())) Log.info('Pixel ACC: {}\n'.format( self.seg_running_score.get_pixel_acc())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def _update_running_score(self, pred, metas): pred = pred.permute(0, 2, 3, 1) for i in range(pred.size(0)): border_size = metas[i]['border_wh'] ori_target = metas[i]['ori_target'] total_logits = cv2.resize( pred[i, :border_size[1], :border_size[0]].cpu().numpy(), tuple(metas[i]['ori_img_wh']), interpolation=cv2.INTER_CUBIC) labelmap = np.argmax(total_logits, axis=-1) self.seg_running_score.update(labelmap[None], ori_target[None])