def __getitem__(self, index): GT_path, LQ_path = None, None # get GT image GT_path = self.paths_GT[index] LQ_path = self.paths_LQ[index] img_GT = util.read_img(self.GT_env, GT_path) img_LQ = util.read_img(self.LQ_env, LQ_path) if self.opt['color']: img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] img_LQ = util.channel_convert(img_LQ.shape[2], self.opt['color'], [img_LQ])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LQ = img_LQ[:, :, [2, 1, 0]] H, W, _ = img_LQ.shape img_GT = torch.from_numpy( np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_LQ = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() if LQ_path is None: LQ_path = GT_path return { 'LQ': img_LQ, 'GT': img_GT, 'LQ_path': LQ_path, 'GT_path': GT_path }
def __getitem__(self, index): HR_path, LR_path, MR_path = None, None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] # get HR image HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) # modcrop in the validation / test phase # if self.opt['phase'] != 'train': # img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) MR_path = self.paths_MR[index] img_MR = util.read_img(self.MR_env, MR_path) if self.opt['noise_gt']: img_MR = img_LR - img_MR if self.opt['phase'] == 'train': # if the image size is too small H, W, C = img_LR.shape LR_size = HR_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_MR = img_MR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] # augmentation - flip, rotate img_MR, img_LR, img_HR = util.augment([img_MR, img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) # channel conversion if self.opt['color']: # img_HR, img_LR, img_MR = util.channel_convert(C, self.opt['color'], [img_HR, img_LR, img_MR]) img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] img_MR = util.channel_convert(C, self.opt['color'], [img_MR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_MR = img_MR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() img_MR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_MR, (2, 0, 1)))).float() return {'HR': img_HR, 'LR': img_LR, 'MR': img_MR, 'HR_path': HR_path, 'MR_path': MR_path, 'LR_path': LR_path}
def __getitem__(self, index): if self.data_type == 'lmdb' and self.LQ_env is None: self._init_lmdb() LQ_path = None # get LQ image LQ_path = self.paths_LQ[index] if self.data_type == 'lmdb': resolution = [int(s) for s in self.sizes_LQ[index].split('_')] else: resolution = None img_LQ = util.read_img(self.LQ_env, LQ_path, resolution) H, W, C = img_LQ.shape # change color space if necessary if self.opt['color']: img_LQ = util.channel_convert(C, self.opt['color'], [img_LQ])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LQ.shape[2] == 3: img_LQ = img_LQ[:, :, [2, 1, 0]] img_LQ = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() return {'LQ': img_LQ, 'LQ_path': LQ_path}
def __getitem__(self, index): LR_path = None # get LR image LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) H, W, C = img_LR.shape ########################################################################## img_LR = cv2.resize( np.copy(img_LR), (int(W / 2), int(H / 2)), interpolation=cv2.INTER_LINEAR) # for avoiding out of memory # force to 3 channels if img_LR.ndim == 2: img_LR = cv2.cvtColor(img_LR, cv2.COLOR_GRAY2BGR) ########################################################################### # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() return {'LR': img_LR, 'LR_path': LR_path}
def __getitem__(self, index): # get full size image full_path = self.paths_hq[index % len(self.paths_hq)] loaded_img = util.read_img(None, full_path, None) img_full1 = util.channel_convert(loaded_img.shape[2], 'RGB', [loaded_img])[0] img_full2 = util.augment([img_full1], True, True)[0] img_full3 = get_square_image(img_full2) # This error crops up from time to time. I suspect an issue with util.read_img. if img_full3.shape[0] == 0 or img_full3.shape[1] == 0: print( "Error with image: %s. Loaded image shape: %s" % (full_path, str(loaded_img.shape)), str(img_full1.shape), str(img_full2.shape), str(img_full3.shape)) # Attempt to recover by just using a fixed array of zeros, which the downstream networks should be fine training against, within reason. img_full3 = np.zeros((1024, 1024, 3), dtype=np.int) img_full = cv2.resize(img_full3, (self.hq_size_cap, self.hq_size_cap), interpolation=cv2.INTER_AREA) patches_hq = [ cv2.resize(img_full, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA) ] self.recursively_extract_patches(img_full, patches_hq, 1) # Image corruption is applied against the full size image for this dataset. img_corrupted = self.corruptor.corrupt_images([img_full])[0] patches_hq_corrupted = [ cv2.resize(img_corrupted, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA) ] self.recursively_extract_patches(img_corrupted, patches_hq_corrupted, 1) # BGR to RGB, HWC to CHW, numpy to tensor if patches_hq[0].shape[2] == 3: patches_hq = [ cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq ] patches_hq_corrupted = [ cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq_corrupted ] patches_hq = [ torch.from_numpy(np.ascontiguousarray(np.transpose( p, (2, 0, 1)))).float() for p in patches_hq ] patches_hq = torch.stack(patches_hq, dim=0) patches_hq_corrupted = [ torch.from_numpy(np.ascontiguousarray(np.transpose( p, (2, 0, 1)))).float() for p in patches_hq_corrupted ] patches_lq = [ torch.nn.functional.interpolate(p.unsqueeze(0), scale_factor=1 / self.scale, mode='area').squeeze() for p in patches_hq_corrupted ] patches_lq = torch.stack(patches_lq, dim=0) d = {'lq': patches_lq, 'hq': patches_hq, 'GT_path': full_path} return d
def __getitem__(self, index): if self.data_type == 'lmdb': if (self.GT_env is None) or (self.LQ_env is None): self._init_lmdb() GT_path, LQ_path = None, None scale = self.opt['scale'] GT_size = self.opt['GT_size'] # get GT image GT_path = self.paths_GT[index] if self.data_type == 'lmdb': resolution = [int(s) for s in self.sizes_GT[index].split('_')] else: resolution = None img_GT = util.read_img(self.GT_env, GT_path, resolution) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_GT = util.modcrop(img_GT, scale) # print('val img_GT shape: ', img_GT.shape) # change color space if necessary if self.opt['color']: img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # print('img_GT shape: ', img_GT.shape) if img_GT.ndim == 2: img_GT = np.expand_dims(img_GT, axis=2) if self.opt['phase'] == 'train': # if the image size is too small H, W, C = img_GT.shape if H < GT_size or W < GT_size: img_GT = cv2.resize(np.copy(img_GT), (GT_size, GT_size), interpolation=cv2.INTER_LINEAR) # randomly crop - GT img shape: [H, W, 1] rnd_h = random.randint(0, max(0, H - GT_size)) rnd_w = random.randint(0, max(0, W - GT_size)) img_GT = img_GT[rnd_h:rnd_h + GT_size, rnd_w:rnd_w + GT_size, :] # augmentation - flip, rotate img_GT = util.augment([img_GT], self.opt['use_flip'], self.opt['use_rot'])[0] # transform() - subsample k space - img_LF # input img shape [H, W, 1] or [H, W, 3] img_LF, img_GT = self.transform(img_GT, self.mask_func, self.seed) if LQ_path is None: LQ_path = GT_path return { 'LQ': img_LF, 'GT': img_GT, 'LQ_path': LQ_path, 'GT_path': GT_path }
def __getitem__(self, index): if self.opt["data_type"] == "lmdb": if self.LR_env is None: self._init_lmdb() LR_path = None scale = self.opt["scale"] LR_size = self.opt["LR_size"] # get LR image LR_path = self.LR_paths[index] if self.opt["data_type"] == "lmdb": resolution = [int(s) for s in self.LR_sizes[index].split("_")] else: resolution = None img_LR = util.read_img( self.LR_env, LR_path, resolution ) # return: Numpy float32, HWC, BGR, [0,1] # modcrop in the validation / test phase if self.opt["phase"] != "train": img_LR = util.modcrop(img_LR, scale) if self.opt["phase"] == "train": H, W, C = img_LR.shape rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h : rnd_h + LR_size, rnd_w : rnd_w + LR_size, :] # augmentation - flip, rotate img_LR = util.augment( img_LR, self.opt["use_flip"], self.opt["use_rot"], self.opt["mode"], ) # change color space if necessary if self.opt["color"]: img_LR = util.channel_convert(img_LR.shape[2], self.opt["color"], [img_LR])[ 0 ] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1))) ).float() return {"LR": img_LR, "LR_path": LR_path}
def __getitem__(self, index): if self.opt["data_type"] == "lmdb": if self.LR_env is None: self._init_lmdb() LR_size = self.LR_size SR_size = self.SR_size scale = self.opt["scale"] # get real kernel map real_ker_map = self.real_ker_map_list[index] # get each kernel map ker_map = self.ker_map_list[index] # get LR image LR_path = self.LR_paths[index] if self.opt["data_type"] == "lmdb": resolution = [int(s) for s in self.LR_sizes[index].split("_")] else: resolution = None img_LR = util.read_img(self.LR_env, LR_path, resolution) H, W, C = img_LR.shape # get SR image img_SR = self.SR_img_list[index] if self.opt["phase"] == "train": # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) rnd_h_SR, rnd_w_SR = int(rnd_h * scale), int(rnd_w * scale) img_SR = img_SR[rnd_h_SR:rnd_h_SR + SR_size, rnd_w_SR:rnd_w_SR + SR_size, :] # augmentation - flip, rotate img_SR = util.augment(img_SR, self.opt["use_flip"], self.opt["use_rot"], self.opt["mode"]) # change color space if necessary if self.opt["color"]: img_SR = util.channel_convert(C, self.opt["color"], [img_SR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_SR.shape[2] == 3: img_SR = img_SR[:, :, [2, 1, 0]] img_SR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_SR, (2, 0, 1)))).float() return {"SR": img_SR, "real_ker": real_ker_map, "ker": ker_map}
def __getitem__(self, index): LR_path = None LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) H, W, C = img_LR.shape if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() return {'LQ': img_LR, 'LQ_path': LR_path}
def __getitem__(self, index): LR_path = None # get LR image LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) H, W, C = img_LR.shape # channel conversion if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() return {'LR': img_LR, 'LR_path': LR_path}
def __getitem__(self, index): LR_path = None # get LR image LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) H, W, C = img_LR.shape # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() returned_dict = {'LR': img_LR, 'LR_path': LR_path} if self.paths_kernel is not None: returned_dict['kernel'] = scipy.io.loadmat(self.paths_kernel[index])['Kernel'] return returned_dict
def __getitem__(self, index): LR_path = None # get LR image LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) H, W, C = img_LR.shape # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if self.opt['size'] is not None: img_LR = TF.to_pil_image(img_LR) img_LR = T.CenterCrop(self.opt['size'])(img_LR) img_LR = TF.to_tensor(img_LR) return {'LQ': img_LR, 'LQ_path': LR_path}
def __getitem__(self, index): if self.opt['data_type'] == 'lmdb': if self.LR_env is None: self._init_lmdb() LR_size = self.LR_size # get LR image, kernel map LR_path = self.LR_paths[index] ker_map = self.ker_maps[index] if self.opt['data_type'] == 'lmdb': resolution = [int(s) for s in self.LR_sizes[index].split('_')] else: resolution = None img_LR = util.read_img(self.LR_env, LR_path, resolution) H, W, C = img_LR.shape if self.opt['phase'] == 'train': #randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] # augmentation - flip, rotate img_LR = util.augment(img_LR, self.opt['use_flip'], self.opt['use_rot'], self.opt['mode']) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() return {'LQ': img_LR, 'ker': ker_map, 'LQ_path': LR_path}
def __getitem__(self, index): LR_path = None if self.opt['znorm']: if self.opt['znorm'] == True: self.znorm = True # Alternative: images are z-normalized to the [-1,1] range # get LR image LR_path = self.paths_LR[index] #img_LR = util.read_img(self.LR_env, LR_path) img_LR = util.read_img(self.LR_env, LR_path, znorm=self.znorm) H, W, C = img_LR.shape # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] elif img_LR.shape[2] == 4: img_LR = img_LR[:, :, [2, 1, 0, 3]] img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() return {'LR': img_LR, 'LR_path': LR_path}
def __getitem__(self, index): if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_UX4_env is None): self._init_lmdb() GT_path, LQ_UX4_path, Ref_path, SR_path = None, None, None, None scale = self.opt['scale'] GT_size = self.opt['GT_size'] # get GT image GT_path = self.paths_GT[index] resolution = [int(s) for s in self.sizes_GT[index].split('_') ] if self.data_type == 'lmdb' else None img_GT = util.read_img(self.GT_env, GT_path, resolution) if self.opt['phase'] != 'train': # modcrop in the validation / test phase img_GT = util.modcrop(img_GT, scale) #if self.opt['color']: # change color space if necessary # img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # get Ref image Ref_path = self.paths_Ref[index] resolution = [int(s) for s in self.sizes_Ref[index].split('_') ] if self.data_type == 'lmdb' else None img_Ref = util.read_img(self.Ref_env, Ref_path, resolution) if self.opt['Ref_color']: # change color space if necessary img_Ref = util.channel_convert(img_Ref.shape[2], self.opt['Ref_color'], [img_Ref])[0] SR_path = self.paths_SR[index] resolution = [int(s) for s in self.sizes_SR[index].split('_') ] if self.data_type == 'lmdb' else None img_SR = util.read_img(self.SR_env, SR_path, resolution) # get LQ_UX4 image if self.paths_LQ_UX4: LQ_UX4_path = self.paths_LQ_UX4[index] resolution = [int(s) for s in self.sizes_LQ_UX4[index].split('_') ] if self.data_type == 'lmdb' else None img_LQ_UX4 = util.read_img(self.LQ_UX4_env, LQ_UX4_path, resolution) if self.opt['phase'] == 'train': H, W, C = img_LQ_UX4.shape LQ_size = GT_size # randomly crop rnd_h = random.randint(0, max(0, H - LQ_size)) rnd_w = random.randint(0, max(0, W - LQ_size)) img_LQ_UX4 = img_LQ_UX4[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] img_Ref = img_Ref[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] img_SR = img_SR[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] img_GT = img_GT[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] # augmentation - flip, rotate img_LQ_UX4, img_Ref, img_SR, img_GT = util.augment([img_LQ_UX4, img_Ref, img_SR, img_GT], self.opt['use_flip'], self.opt['use_rot']) # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LQ_UX4 = img_LQ_UX4[:, :, [2, 1, 0]] img_SR = img_SR[:, :, [2, 1, 0]] if img_Ref.shape[2] == 3: img_Ref = img_Ref[:, :, [2, 1, 0]] img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_LQ_UX4 = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ_UX4, (2, 0, 1)))).float() img_SR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_SR, (2, 0, 1)))).float() img_Ref = torch.from_numpy(np.ascontiguousarray(np.transpose(img_Ref, (2, 0, 1)))).float() return {'LQ_UX4': img_LQ_UX4,'Ref': img_Ref, 'SR': img_SR, 'GT': img_GT, 'LQ_UX4_path': LQ_UX4_path, 'Ref_path': Ref_path, 'SR_path': SR_path, 'GT_path': GT_path}
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] # get HR image HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) # modcrop in validation phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # get LR image if self.paths_LR: LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) else: # down-sampling on-the-fly # randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_HR.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, HR_size) W_s = _mod(W_s, random_scale, scale, HR_size) img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR) H, W, _ = img_HR.shape # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR.shape if self.opt['phase'] == 'train': LR_size = HR_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) # channel conversion if self.opt['color']: img_LR, img_HR = util.channel_convert(C, self.opt['color'], [img_LR, img_HR]) # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = HR_path return { 'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path }
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] # get HR image HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] if self.opt['resize'] < 1: print('Resize by %.2f' % self.opt['resize']) img_HR = cv2.resize(img_HR, None, fx=self.opt['resize'], fy=self.opt['resize'], interpolation=cv2.INTER_LINEAR) # print(img_HR.shape) # get LR image if self.paths_LR: LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) else: # down-sampling on-the-fly # randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_HR.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, HR_size) W_s = _mod(W_s, random_scale, scale, HR_size) img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR) # force to 3 channels if img_HR.ndim == 2: img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR) H, W, _ = img_HR.shape if self.opt['downsample'] == 'cubic': img_LR = cv2.resize(img_HR, dsize=None, fx=1.0/scale, fy=1.0/scale, interpolation=cv2.INTER_CUBIC) elif self.opt['downsample'] == 'numpy': img_LR = util.imresize_np(img_HR, 1 / scale, True) elif self.opt['downsample'] == 'linear': img_LR = cv2.resize(img_HR, dsize=None, fx=1.0 / scale, fy=1.0 / scale, interpolation=cv2.INTER_LINEAR) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) # print(img_HR.shape) # print(img_LR.shape) if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_HR.shape if H < HR_size or W < HR_size or not self.opt['crop']: img_HR = cv2.resize( np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize if self.opt['downsample'] == 'cubic': img_LR = cv2.resize(img_HR, dsize=None, fx=1.0 / scale, fy=1.0 / scale, interpolation=cv2.INTER_CUBIC) elif self.opt['downsample'] == 'numpy': img_LR = util.imresize_np(img_HR, 1 / scale, True) elif self.opt['downsample'] == 'linear': img_LR = cv2.resize(img_HR, dsize=None, fx=1.0 / scale, fy=1.0 / scale, interpolation=cv2.INTER_LINEAR) # # img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR.shape LR_size = HR_size // scale # randomly crop if self.opt['crop']: rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) if self.LR_random_fuzzy is not None: random_fuzzy = random.choice(self.LR_random_fuzzy) assert self.opt['downsample'] == 'numpy' init_LR = np.copy(img_LR) img_LR = util.imresize(img_LR, random_fuzzy, True) img_LR = util.imresize(img_LR, 1 / random_fuzzy, True) if img_LR.shape[0] != LR_size or img_LR.shape[1] != LR_size: print('Warning: LR shape changed after random fuzzy. Using initial one.', img_LR.shape[0], img_LR.shape[1], LR_size) img_LR = init_LR # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() # return: 0-1 if LR_path is None: LR_path = HR_path return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] # get HR image index1 = index % len(self.paths_HR) HR_path = self.paths_HR[index1] img_HR = util.read_img(self.HR_env, HR_path) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] # get LR image if self.paths_LR: index2 = index % len(self.paths_LR) LR_path = self.paths_LR[index2] img_LR = util.read_img(self.LR_env, LR_path) if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_HR.shape if H < HR_size or W < HR_size: img_HR = cv2.resize( np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR.shape LR_size = HR_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] H, W, C = img_HR.shape # randomly crop rnd_h = random.randint(0, max(0, H - HR_size)) rnd_w = random.randint(0, max(0, W - HR_size)) img_HR = img_HR[rnd_h:rnd_h + HR_size, rnd_w:rnd_w + HR_size, :] # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = HR_path return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] if HR_size: LR_size = HR_size // scale self.znorm = False # Default case: images are in the [0,1] range if self.opt['znorm']: if self.opt['znorm'] == True: # Alternative: images are z-normalized to the [-1,1] range self.znorm = True ######## Read the images ######## # Check if LR Path is provided if self.paths_LR: # If LR is provided, check if 'rand_flip_LR_HR' is enabled if self.opt['rand_flip_LR_HR'] and self.opt['phase'] == 'train': LRHRchance = random.uniform(0, 1) if self.opt['flip_chance']: flip_chance = self.opt['flip_chance'] else: flip_chance = 0.05 #print("Random Flip Enabled") # Normal case, no flipping: else: LRHRchance = 0. flip_chance = 0. #print("No Random Flip") # get HR and LR images # If enabled, random chance that LR and HR images are flipped # Normal case, no flipping # If img_LR (LR_path) doesn't exist, use img_HR (HR_path) if LRHRchance < (1 - flip_chance): HR_path = self.paths_HR[index] LR_path = self.paths_LR[index] if LR_path is None: LR_path = HR_path #print("HR kept") # Flipped case: # If img_HR (LR_path) doesn't exist, use img_HR (LR_path) else: HR_path = self.paths_LR[index] LR_path = self.paths_HR[index] if HR_path is None: HR_path = LR_path #print("HR flipped") # Read the LR and HR images from the provided paths img_LR = util.read_img(self.LR_env, LR_path, znorm=self.znorm) img_HR = util.read_img(self.HR_env, HR_path, znorm=self.znorm) # Even if LR dataset is provided, force to generate aug_downscale % of downscales OTF from HR # The code will later make sure img_LR has the correct size if self.opt['aug_downscale']: aug_downscale = self.opt['aug_downscale'] if np.random.rand() < aug_downscale: img_LR = img_HR # If LR is not provided, use HR and modify on the fly else: HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path, znorm=self.znorm) img_LR = img_HR ######## Modify the images ######## # HR modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary # Note: Changing the LR colorspace here could make it so some colors are introduced when # doing the augmentations later (ie: with Gaussian or Speckle noise), may be good if the # model can learn to remove color noise in grayscale images, otherwise move to before # converting to tensors # self.opt['color'] For both LR and HR as in the the original code, kept for compatibility # self.opt['color_HR'] and self.opt['color_LR'] for independent control if self.opt['color_HR'] or self.opt['color']: # Only change HR img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] if self.opt['color_LR'] or self.opt['color']: # Only change LR img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0] ######## Augmentations ######## # Augmentations during training if self.opt['phase'] == 'train': # Validate there's an img_LR, if not, use img_HR if img_LR is None: img_LR = img_HR print("Image LR: ", LR_path, ( "was not loaded correctly, using HR pair to downscale on the fly." )) # Check that HR and LR have the same dimensions ratio, else, generate new LR from HR if img_HR.shape[0] // img_LR.shape[0] != img_HR.shape[ 1] // img_LR.shape[1]: print( "Warning: img_LR dimensions ratio does not match img_HR dimensions ratio for: ", HR_path) img_LR = img_HR # Random Crop (reduce computing cost and adjust images to correct size first) if img_HR.shape[0] > HR_size or img_HR.shape[1] > HR_size: # Here the scale should be in respect to the images, not to the training scale (in case they are being scaled on the fly) scaleor = img_HR.shape[0] // img_LR.shape[0] img_HR, img_LR = augmentations.random_crop_pairs( img_HR, img_LR, HR_size, scaleor) # Or if the HR images are too small, Resize to the HR_size size and fit LR pair to LR_size too if img_HR.shape[0] < HR_size or img_HR.shape[1] < HR_size: print("Warning: Image: ", HR_path, " size does not match HR size: (", HR_size, "). The image size is: ", img_HR.shape) # rescale HR image to the HR_size img_HR, _ = augmentations.resize_img(np.copy(img_HR), crop_size=(HR_size, HR_size), algo=cv2.INTER_LINEAR) # rescale LR image to the LR_size (The original code discarded the img_LR and generated a new one on the fly from img_HR) img_LR, _ = augmentations.resize_img(np.copy(img_LR), crop_size=(LR_size, LR_size), algo=cv2.INTER_LINEAR) # Randomly scale LR from HR during training if : # - LR dataset is not provided # - LR dataset is not in the correct scale # - Also to check if LR is not at the correct scale already (if img_LR was changed to img_HR) if img_LR.shape[0] != LR_size or img_LR.shape[1] != LR_size: ds_algo = 777 # default to matlab-like bicubic downscale # if manually set and scale algorithms are provided, then: if self.opt['lr_downscale']: if self.opt['lr_downscale_types']: ds_algo = self.opt['lr_downscale_types'] else: # else, if for some reason img_LR is too large, default to matlab-like bicubic downscale # if not self.opt['aug_downscale']: #only print the warning if not being forced to use HR images instead of LR dataset (which is a known case) print( "LR image is too large, auto generating new LR for: ", LR_path) img_LR, scale_interpol_algo = augmentations.scale_img( img_LR, scale, algo=ds_algo) if self.znorm: # The generated LR sometimes get slightly out of the [-1,1] range np.clip(img_LR, -1., 1., out=img_LR) else: # The generated LR sometimes get slightly out of the [0,1] range np.clip(img_LR, 0., 1., out=img_LR) # """ # Rotations. 'use_flip' = 180 or 270 degrees (mirror), 'use_rot' = 90 degrees, 'HR_rrot' = random rotations +-45 degrees if (self.opt['use_flip'] or self.opt['use_rot']) and self.opt['hr_rrot']: if np.random.rand() > 0.5: img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], self.opt['use_rot']) else: if np.random.rand( ) > 0.5: # randomize the random rotations, so half the images are the original img_HR, img_LR = augmentations.random_rotate_pairs( img_HR, img_LR, HR_size, scale) elif (self.opt['use_flip'] or self.opt['use_rot']) and not self.opt['hr_rrot']: # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], self.opt['use_rot']) elif self.opt['hr_rrot']: if np.random.rand( ) > 0.5: # randomize the random rotations, so half the images are the original img_HR, img_LR = augmentations.random_rotate_pairs( img_HR, img_LR, HR_size, scale) # Final checks # if the resulting HR image size so far is too large or too small, resize HR to the correct size and downscale to generate a new LR on the fly if img_HR.shape[0] != HR_size or img_HR.shape[1] != HR_size: print("Image: ", HR_path, " size does not match HR size: (", HR_size, "). The image size is: ", img_HR.shape) # rescale HR image to the HR_size img_HR, _ = augmentations.resize_img(np.copy(img_HR), crop_size=(HR_size, HR_size), algo=cv2.INTER_LINEAR) # if manually provided and scale algorithms are provided, then: if self.opt['lr_downscale_types']: ds_algo = self.opt['lr_downscale_types'] else: # using matlab imresize to generate LR pair ds_algo = 777 img_LR, _ = augmentations.scale_img(img_HR, scale, algo=ds_algo) # if the resulting LR so far does not have the correct dimensions, also generate a new HR-LR image pair on the fly if img_LR.shape[0] != LR_size or img_LR.shape[0] != LR_size: print("Image: ", LR_path, " size does not match LR size: (", HR_size // scale, "). The image size is: ", img_LR.shape) # rescale HR image to the HR_size (should not be needed, but something went wrong before, just for sanity) img_HR, _ = augmentations.resize_img(np.copy(img_HR), crop_size=(HR_size, HR_size), algo=cv2.INTER_LINEAR) # if manually provided and scale algorithms are provided, then: if self.opt['lr_downscale_types']: ds_algo = self.opt['lr_downscale_types'] else: # using matlab imresize to generate LR pair ds_algo = 777 img_LR, _ = augmentations.scale_img(img_HR, scale, algo=ds_algo) # Below are the LR On The Fly augmentations # Add noise to HR if enabled AND noise types are provided (for noise2noise and similar) if self.opt['hr_noise']: if self.opt['hr_noise_types']: img_HR, hr_noise_algo = augmentations.noise_img( img_HR, noise_types=self.opt['hr_noise_types']) else: print( "Noise types 'hr_noise_types' not defined. Skipping OTF noise for HR." ) # Create color fringes # Caution: Can easily destabilize a model # Only applied to a small % of the images. Around 20% and 50% appears to be stable. if self.opt['lr_fringes']: lr_fringes_chance = self.opt['lr_fringes_chance'] if self.opt[ 'lr_fringes_chance'] else 0.4 if np.random.rand() > (1. - lr_fringes_chance): img_LR = augmentations.translate_chan(img_LR) # """ # v LR blur AND blur types are provided, else will skip if self.opt['lr_blur']: if self.opt['lr_blur_types']: img_LR, blur_algo, blur_kernel_size = augmentations.blur_img( img_LR, blur_algos=self.opt['lr_blur_types']) else: print( "Blur types 'lr_blur_types' not defined. Skipping OTF blur." ) # """ # """ # v LR primary noise: Add noise to LR if enabled AND noise types are provided, else will skip if self.opt['lr_noise']: if self.opt['lr_noise_types']: img_LR, noise_algo = augmentations.noise_img( img_LR, noise_types=self.opt['lr_noise_types']) else: print( "Noise types 'lr_noise_types' not defined. Skipping OTF noise." ) # v LR secondary noise: Add additional noise to LR if enabled AND noise types are provided, else will skip if self.opt['lr_noise2']: if self.opt['lr_noise_types2']: img_LR, noise_algo2 = augmentations.noise_img( img_LR, noise_types=self.opt['lr_noise_types2']) else: print( "Noise types 'lr_noise_types2' not defined. Skipping OTF secondary noise." ) # """ # """ # v LR cutout / LR random erasing (for inpainting/classification tests) if self.opt['lr_cutout'] and (self.opt['lr_erasing'] != True): img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2) elif self.opt['lr_erasing'] and (self.opt['lr_cutout'] != True): img_LR = augmentations.random_erasing(img_LR) elif self.opt['lr_cutout'] and self.opt['lr_erasing']: if np.random.rand( ) > 0.5: # only do cutout or erasing, not both at the same time img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2, p=0.5) else: img_LR = augmentations.random_erasing(img_LR, p=0.5, modes=[3]) # """ # Apply "auto levels" to images # Randomize for augmentation rand_levels = (1 - self.opt['rand_auto_levels'] ) if self.opt['rand_auto_levels'] else 1 if self.opt['auto_levels'] and np.random.rand() > rand_levels: if self.opt['auto_levels'] == 'HR': img_HR = augmentations.simplest_cb(img_HR, znorm=self.znorm) elif self.opt['auto_levels'] == 'LR': img_LR = augmentations.simplest_cb(img_LR, znorm=self.znorm) elif self.opt['auto_levels'] == True or self.opt[ 'auto_levels'] == 'Both': img_HR = augmentations.simplest_cb(img_HR, znorm=self.znorm) img_LR = augmentations.simplest_cb(img_LR, znorm=self.znorm) # Apply unsharpening mask to HR images # img_HR1 = img_HR # Randomize for augmentation rand_unsharp = ( 1 - self.opt['rand_unsharp']) if self.opt['rand_unsharp'] else 1 if self.opt['unsharp_mask'] and np.random.rand() > rand_unsharp: img_HR = augmentations.unsharp_mask(img_HR, znorm=self.znorm) # For testing and validation if self.opt['phase'] != 'train': # Randomly downscale LR if enabled if self.opt['lr_downscale']: if self.opt['lr_downscale_types']: img_LR, scale_interpol_algo = augmentations.scale_img( img_LR, scale, algo=self.opt['lr_downscale_types']) else: # Default to matlab-like bicubic downscale img_LR, scale_interpol_algo = augmentations.scale_img( img_LR, scale, algo=777) # Alternative position for changing the colorspace of LR. # if self.opt['color_LR']: # Only change LR # img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0] # Debug # Save img_LR and img_HR images to a directory to visualize what is the result of the on the fly augmentations # DO NOT LEAVE ON DURING REAL TRAINING #self.output_sample_imgs = True if self.opt['phase'] == 'train': if self.output_sample_imgs: import os # LR_dir, im_name = os.path.split(LR_path) HR_dir, im_name = os.path.split(HR_path) baseHRdir, _ = os.path.split(HR_dir) debugpath = os.path.join(baseHRdir, 'sampleOTFimgs') print('debugpathhhhhhhh', debugpath) # debugpath = os.path.join(os.path.split(LR_dir)[0], 'sampleOTFimgs') # debugpath = os.path.join('D:/tmp_test', 'sampleOTFimgs') # print(debugpath) if not os.path.exists(debugpath): os.makedirs(debugpath) if self.opt[ 'znorm']: # Back from [-1,1] range to [0,1] range for OpenCV2 img_LRn = (img_LR + 1.0) / 2.0 img_HRn = (img_HR + 1.0) / 2.0 # img_HRn1 = (img_HR1 + 1.0) / 2.0 else: # Already in the [0,1] range for OpenCV2 img_LRn = img_LR img_HRn = img_HR # img_HRn1 = img_HR1 import uuid hex = uuid.uuid4().hex # random name to save + had to multiply by 255, else getting all black image cv2.imwrite(os.path.join(debugpath, im_name + hex + '_LR.png'), img_LRn * 255) # random name to save + had to multiply by 255, else getting all black image cv2.imwrite(os.path.join(debugpath, im_name + hex + '_HR.png'), img_HRn * 255) # cv2.imwrite(debugpath+"\\"+im_name+hex+'_HR1.png',img_HRn1*255) #random name to save + had to multiply by 255, else getting all black image ######## Convert images to PyTorch Tensors ######## """ if (img_HR.min() < -1): print("HR.min :", img_HR.min()) print(HR_path) if (img_HR.max() > 1): print("HR.max :", img_HR.max()) print(HR_path) if (img_LR.min() < -1): print("LR.min :", img_LR.min()) print(LR_path) if (img_LR.max() > 1): print("LR.max :", img_LR.max()) print(LR_path) #""" # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] # BGRA to RGBA, HWC to CHW, numpy to tensor elif img_LR.shape[2] == 4: img_HR = img_HR[:, :, [2, 1, 0, 3]] img_LR = img_LR[:, :, [2, 1, 0, 3]] img_HR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = HR_path return { 'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path }
def __getitem__(self, index): # self.block_size = 8 Uncomp_size = self.opt['patch_size'] # get Uncomp image Uncomp_path = self.paths_Uncomp[index] img_Uncomp = util.read_img(self.Uncomp_env, Uncomp_path) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_Uncomp = util.modcrop(img_Uncomp, self.block_size) # change color space if necessary img_Uncomp = 255 * util.channel_convert( img_Uncomp.shape[2], 'ycbcr' if 'chroma' in self.opt['mode'] else 'y', [img_Uncomp])[0] if 'chroma' in self.opt['mode'] and img_Uncomp.shape[ 2] == 1: #For the case of loading a grayscale image in JPEG format during chroma training: img_Uncomp = np.tile(img_Uncomp, [1, 1, 3]) # img_Uncomp = util.channel_convert(img_Uncomp.shape[2], 'ycbcr', [img_Uncomp])[0] # randomly scale during training if self.opt['phase'] == 'train': QF = self.quality_factors[np.random.choice(len( self.quality_factors), p=self.QF_probs)] if isinstance(QF, list): QF = np.random.randint(low=QF[0], high=QF[1]) # raise Exception('QF range is unsupported yet') random_scale = random.choice(self.random_scale_list) if random_scale != 1: H_s, W_s, _ = img_Uncomp.shape def _mod(n, random_scale, thres): rlt = int(n * random_scale) rlt = (rlt // self.block_size) * self.block_size return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, Uncomp_size) W_s = _mod(W_s, random_scale, Uncomp_size) img_Uncomp = cv2.resize(np.copy(img_Uncomp), (W_s, H_s), interpolation=cv2.INTER_LINEAR) # force to 3 channels if img_Uncomp.ndim == 2: img_Uncomp = np.expand_dims(img_Uncomp, -1) # img_Uncomp = cv2.cvtColor(img_Uncomp, cv2.COLOR_GRAY2BGR) else: QF = self.per_index_QF[index] H, W, _ = img_Uncomp.shape # # using CEM imresize: # img_LR = imresize(img_HR,scale_factor=[1/float(scale)],kernel=self.kernel) if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_Uncomp.shape # randomly crop rnd_h_Uncomp = random.randint(0, max(0, H - Uncomp_size)) rnd_w_Uncomp = random.randint(0, max(0, W - Uncomp_size)) img_Uncomp = img_Uncomp[rnd_h_Uncomp:rnd_h_Uncomp + Uncomp_size, rnd_w_Uncomp:rnd_w_Uncomp + Uncomp_size, :] # augmentation - flip, rotate img_Uncomp = util.augment([img_Uncomp], self.opt['use_flip'], self.opt['use_rot']) img_Uncomp = img_Uncomp[0] # BGR to RGB, HWC to CHW, numpy to tensor # if img_Uncomp.shape[2] == 3: # img_Uncomp = img_Uncomp[:, :, [2, 1, 0]] img_Uncomp = torch.from_numpy( np.ascontiguousarray(np.transpose(img_Uncomp, (2, 0, 1)))).float() return {'Uncomp': img_Uncomp, 'Uncomp_path': Uncomp_path, 'QF': QF}
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] #v if self.opt['rand_flip_LR_HR'] and self.LR_scale and self.opt['phase'] == 'train': LRHRchance = random.uniform(0, 1) if self.opt['flip_chance']: flip_chance = self.opt['flip_chance'] else: flip_chance = 0.05 #print("Random Flip Enabled") else: LRHRchance = 0. flip_chance = 0. #print("No Random Flip") # get HR image if LRHRchance < (1- flip_chance): HR_path = self.paths_HR[index] #print("HR kept") else: HR_path = self.paths_LR[index] #print("HR flipped") #v img_HR = util.read_img(self.HR_env, HR_path) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] #v if self.HR_crop and (self.HR_rrot != True): crop_size = (HR_size, HR_size) img_HR, _ = augmentations.random_resize_img(img_HR, crop_size) elif self.HR_rrot and (self.HR_crop != True): img_HR, _ = augmentations.random_rotate(img_HR) elif self.HR_crop and self.HR_rrot: if np.random.rand() > 0.5: crop_size = (HR_size, HR_size) img_HR, _ = augmentations.random_resize_img(img_HR, crop_size) else: img_HR, _ = augmentations.random_rotate(img_HR) #v #v if self.HR_noise: img_HR, hr_noise_algo = augmentations.noise_img(img_HR, self.hr_noise_types) #v # get LR image if self.paths_LR: if self.HR_crop or self.HR_rrot: #v img_LR = img_HR else: if LRHRchance < (1- flip_chance): LR_path = self.paths_LR[index] #print("LR kept") else: LR_path = self.paths_HR[index] #print("LR flipped") img_LR = util.read_img(self.LR_env, LR_path) #""" #v scale if self.LR_scale: img_LR, scale_interpol_algo = augmentations.scale_img(img_LR, scale) #""" #""" #v blur if self.LR_blur: img_LR, blur_algo, blur_kernel_size = augmentations.blur_img(img_LR, self.blur_algos) #""" #""" #v noise if self.LR_noise: img_LR, noise_algo = augmentations.noise_img(img_LR, self.noise_types) if self.LR_noise2: img_LR, noise_algo2 = augmentations.noise_img(img_LR, self.noise_types2) #""" #""" #v LR cutout / LR random erasing if self.LR_cutout and (self.LR_erasing != True): img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2) elif self.LR_erasing and (self.LR_cutout != True): #only do cutout or erasing, not both img_LR = augmentations.random_erasing(img_LR) elif self.LR_cutout and self.LR_erasing: if np.random.rand() > 0.5: img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2, p=0.5) else: img_LR = augmentations.random_erasing(img_LR, p=0.5, modes=[3]) #""" else: # down-sampling on-the-fly # randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_HR.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, HR_size) W_s = _mod(W_s, random_scale, scale, HR_size) img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR) # force to 3 channels if img_HR.ndim == 2: img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR) H, W, _ = img_HR.shape # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_HR.shape if H < HR_size or W < HR_size: img_HR = cv2.resize( np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR.shape LR_size = HR_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) # change color space if necessary if self.opt['color']: #img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0] # v appears to work ok # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = HR_path return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size_w = self.opt['HR_size_w'] HR_size_h = self.opt['HR_size_h'] # get HR image HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] # get LR image if self.paths_LR: LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) if True:#self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_HR.shape if H < HR_size_h or W < HR_size_w: img_HR = cv2.resize( np.copy(img_HR), (HR_size_w, HR_size_h), interpolation=cv2.INTER_LINEAR) img_LR = cv2.resize( np.copy(img_LR), (HR_size_w//scale, HR_size_h//scale), interpolation=cv2.INTER_LINEAR) else: H, W, C = img_LR.shape LR_size_h = HR_size_h // scale LR_size_w = HR_size_w // scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size_h)) rnd_w = random.randint(0, max(0, W - LR_size_w)) img_LR = img_LR[rnd_h:rnd_h + LR_size_h, rnd_w:rnd_w + LR_size_w, :] rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size_h, rnd_w_HR:rnd_w_HR + HR_size_w, :] #augmentation - flip, rotate #img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ # self.opt['use_rot']) #print(img_LR.shape,img_HR.shape) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = HR_path return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
def __getitem__(self, index): # print("EJecuta GeT ITEM") HR_path, LR_path = None, None scale = 0 #self.opt['scale'] HR_size = self.opt['HR_size'] # get HR image HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) # modcrop in the validation / test phase if self.opt['phase'] != 'train': # print("Opcion: ", self.opt["phase"]) img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] # get LR image if self.paths_LR: LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) else: # down-sampling on-the-fly # randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_HR.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, HR_size) W_s = _mod(W_s, random_scale, scale, HR_size) img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR) # force to 3 channels if img_HR.ndim == 2: img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR) H, W, _ = img_HR.shape # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) if self.opt['phase'] == 'train': # if the image size is too small # print("1...........") H, W, _ = img_HR.shape if H < HR_size or W < HR_size: img_HR = cv2.resize( np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR.shape LR_size = HR_size #// scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() # print("2.................................") # # print(img_HR.shape) if LR_path is None: LR_path = HR_path return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
def __getitem__(self, index): if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None): self._init_lmdb() GT_path, LQ_path = None, None scale = self.opt['scale'] GT_size = self.opt['GT_size'] # get GT image GT_path = self.paths_GT[index] resolution = [int(s) for s in self.sizes_GT[index].split('_') ] if self.data_type == 'lmdb' else None img_GT = util.read_img(self.GT_env, GT_path, resolution) if self.opt['phase'] != 'train': # modcrop in the validation / test phase img_GT = util.modcrop(img_GT, scale) if self.opt['color']: # change color space if necessary img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # get LQ image if self.paths_LQ: LQ_path = self.paths_LQ[index] resolution = [int(s) for s in self.sizes_LQ[index].split('_') ] if self.data_type == 'lmdb' else None img_LQ = util.read_img(self.LQ_env, LQ_path, resolution) else: # down-sampling on-the-fly # randomly scale during training random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_GT.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, GT_size) W_s = _mod(W_s, random_scale, scale, GT_size) img_GT = cv2.resize(img_GT, (W_s, H_s), interpolation=cv2.INTER_LINEAR) if img_GT.ndim == 2: img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR) H, W, _ = img_GT.shape # using matlab imresize img_LQ = util.imresize_np(img_GT, 1 / scale, True) if img_LQ.ndim == 2: img_LQ = np.expand_dims(img_LQ, axis=2) # get lr_large image img_LQ_Large = cv2.resize(img_LQ, (GT_size, GT_size), cv2.INTER_CUBIC) # get the pts, heatmaps and masks f_anno = osp.join(self.landmarks_folder_256, GT_path + '.txt') # load the landmarks pts, point_set = util.anno_parser(f_anno, 68) # if self.opt['phase'] == 'train': # # if the image size is too small # H, W, _ = img_GT.shape # if H < GT_size or W < GT_size: # img_GT = cv2.resize(img_GT, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR) # # using matlab imresize # img_LQ = util.imresize_np(img_GT, 1 / scale, True) # if img_LQ.ndim == 2: # img_LQ = np.expand_dims(img_LQ, axis=2) H, W, C = img_LQ.shape # augmentation - flip, rotate imgs = [] imgs.append(img_LQ) imgs.append(img_GT) rlt, pts = util.augment_imgs_landmarks(GT_size, imgs, pts, self.opt['use_flip'], self.opt['use_rot']) img_LQ = rlt[0] img_GT = rlt[-1] if self.opt['color']: # change color space if necessary img_LQ = util.channel_convert(C, self.opt['color'], [img_LQ])[0] # TODO during val no definition # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LQ = img_LQ[:, :, [2, 1, 0]] img_LQ_Large = img_LQ_Large[:, :, [2, 1, 0]] img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_LQ = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() img_LQ_Large = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ_Large, (2, 0, 1)))).float() pts = util.apply_bound(pts, 256, 256) # H*W*C GT_heatmaps, GT_mask = util.generate_label_map(pts, 16, 16, self.sigma, 16.0, self.heatmap_type) GT_heatmaps = torch.from_numpy(GT_heatmaps.transpose((2, 0, 1))).type(torch.FloatTensor) GT_mask = torch.from_numpy(GT_mask.transpose((2,0,1))).type(torch.ByteTensor) if LQ_path is None: LQ_path = GT_path return {'LQ': img_LQ, 'GT': img_GT, 'LQ_Large': img_LQ_Large, 'GT_heatmaps': GT_heatmaps, 'GT_mask': GT_mask}
def __getitem__(self, index): if self.opt['data_type'] == 'lmdb': if (self.GT_env is None) or (self.LR_env is None): self._init_lmdb() GT_path, LR_path = None, None scale = self.opt['scale'] GT_size = self.opt['GT_size'] LR_size = self.opt['LR_size'] # get GT image GT_path = self.GT_paths[index] if self.opt['data_type'] == 'lmdb': resolution = [int(s) for s in self.GT_sizes[index].split('_')] else: resolution = None img_GT = util.read_img( self.GT_env, GT_path, resolution) #return: Numpy float32, HWC, BGR, [0,1] # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_GT = util.modcrop(img_GT, scale) # get LR image if self.LR_paths: # LR exist LR_path = self.LR_paths[index] if self.opt['data_type'] == 'lmdb': resolution = [int(s) for s in self.LR_sizes[index].split('_')] else: resolution = None img_LR = util.read_img(self.LR_env, LR_path, resolution) else: ## down-sampling on-the-fly, randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_GT.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, GT_size) W_s = _mod(W_s, random_scale, scale, GT_size) img_GT = cv2.resize(np.copy(img_GT), (W_s, H_s), interpolation=cv2.INTER_LINEAR) # force to 3 channels if img_GT.ndim == 2: img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR) if self.opt['phase'] == 'train': H, W, C = img_LR.shape assert LR_size == GT_size // scale, 'GT size does not match LR size' # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] rnd_h_GT, rnd_w_GT = int(rnd_h * scale), int(rnd_w * scale) img_GT = img_GT[rnd_h_GT:rnd_h_GT + GT_size, rnd_w_GT:rnd_w_GT + GT_size, :] # augmentation - flip, rotate img_LR, img_GT = util.augment([img_LR, img_GT], self.opt['use_flip'], self.opt['use_rot'], self.opt['mode']) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert( C, self.opt['color'], [img_LR])[0] # TODO during val no definition img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_GT = torch.from_numpy( np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = GT_path return { 'LQ': img_LR, 'GT': img_GT, 'LQ_path': LR_path, 'GT_path': GT_path }
def __getitem__(self, index): # HR_path, LR_path = None, None fake real scale = self.opt['scale'] HR_size = self.opt['HR_size'] index_fake, index_real = index, np.random.randint(0, len(self.paths_real_LR)) # get LR image LR_fake_path = self.paths_fake_LR[index_fake] LR_real_path = self.paths_real_LR[index_real] # fake_w_path = self.paths_fake_weights[index_fake] # real_w_path = self.paths_real_weights[index_real] img_LR_fake = util.read_img(self.LR_env, LR_fake_path) img_LR_real = util.read_img(self.LR_env, LR_real_path) # fake_w = np.load(fake_w_path)[0].transpose((1, 2, 0)) # real_w = np.load(real_w_path)[0].transpose((1, 2, 0)) # 1, H, W # fake_w = cv2.resize(fake_w, (img_LR_fake.shape[1], img_LR_fake.shape[0]), interpolation=cv2.INTER_LINEAR) # real_w = cv2.resize(real_w, (img_LR_real.shape[1], img_LR_real.shape[0]), interpolation=cv2.INTER_LINEAR) # fake_w = np.reshape(fake_w, list(fake_w.shape)+[1]) # real_w = np.reshape(real_w, list(real_w.shape)+[1]) # H, W, 1 # get HR image HR_path = self.paths_HR[index_fake] index_unpair = np.random.randint(0, len(self.paths_HR)) HR_unpair = self.paths_HR[index_unpair] img_HR = util.read_img(self.HR_env, HR_path) img_unpair_HR = util.read_img(self.HR_env, HR_unpair) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_HR.shape if H < HR_size or W < HR_size: img_HR = cv2.resize(np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR_fake.shape H_r, W_r, C = img_LR_real.shape LR_size = HR_size // scale # randomly crop rnd_h_fake = random.randint(0, max(0, H - LR_size)) rnd_w_fake = random.randint(0, max(0, W - LR_size)) rnd_h_real = random.randint(0, max(0, H_r - LR_size)) rnd_w_real = random.randint(0, max(0, W_r - LR_size)) img_LR_fake = img_LR_fake[rnd_h_fake:rnd_h_fake + LR_size, rnd_w_fake:rnd_w_fake + LR_size, :] img_LR_real = img_LR_real[rnd_h_real:rnd_h_real + LR_size, rnd_w_real:rnd_w_real + LR_size, :] # fake_w = fake_w[rnd_h_fake:rnd_h_fake + LR_size, rnd_w_fake:rnd_w_fake + LR_size, :] # real_w = real_w[rnd_h_real:rnd_h_real + LR_size, rnd_w_real:rnd_w_real + LR_size, :] H, W, C = img_HR.shape H_real, W_real, C_real = img_unpair_HR.shape rnd_h = int(rnd_h_fake*scale) rnd_w = int(rnd_w_fake*scale) rnd_h_real = random.randint(0, max(0, H_real - HR_size)) rnd_w_real = random.randint(0, max(0, W_real - HR_size)) img_HR = img_HR[rnd_h:rnd_h + HR_size, rnd_w:rnd_w + HR_size, :] img_unpair_HR = img_unpair_HR[rnd_h_real:rnd_h_real + HR_size, rnd_w_real:rnd_w_real + HR_size, :] # augmentation - flip, rotate img_LR_fake, img_LR_real, img_HR, img_unpair_HR \ = util.augment([img_LR_fake, img_LR_real, img_HR, img_unpair_HR], self.opt['use_flip'], self.opt['use_rot']) # if self.paths_real_weights: # real_w = util.augment([real_w], # self.opt['use_flip'], self.opt['use_rot']) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_unpair_HR = img_unpair_HR[:, :, [2, 1, 0]] img_LR_real = img_LR_real[:, :, [2, 1, 0]] img_LR_fake = img_LR_fake[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_unpair_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_unpair_HR, (2, 0, 1)))).float() img_LR_real = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR_real, (2, 0, 1)))).float() img_LR_fake = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR_fake, (2, 0, 1)))).float() return {'LR_real': img_LR_real, 'LR_fake': img_LR_fake, 'HR': img_HR, 'HR_unpair': img_unpair_HR, 'LR_real_path': LR_real_path, 'LR_fake_path': LR_fake_path, 'HR_path': HR_path}
def __getitem__(self, index): if self.data_type == 'lmdb': if (self.GT_env is None) or (self.LQ_env is None): self._init_lmdb() GT_path, LQ_path = None, None scale = self.opt['scale'] GT_size = self.opt['GT_size'] # get GT image GT_path = self.paths_GT[index] if self.data_type == 'lmdb': resolution = [int(s) for s in self.sizes_GT[index].split('_')] else: resolution = None img_GT = util.read_img(self.GT_env, GT_path, resolution) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_GT = util.modcrop(img_GT, scale) # change color space if necessary if self.opt['color']: img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # get LQ image if self.paths_LQ: LQ_path = self.paths_LQ[index] if self.data_type == 'lmdb': resolution = [int(s) for s in self.sizes_LQ[index].split('_')] else: resolution = None img_LQ = util.read_img(self.LQ_env, LQ_path, resolution) else: # down-sampling on-the-fly # randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_GT.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, GT_size) W_s = _mod(W_s, random_scale, scale, GT_size) img_GT = cv2.resize(np.copy(img_GT), (W_s, H_s), interpolation=cv2.INTER_LINEAR) # force to 3 channels if img_GT.ndim == 2: img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR) H, W, _ = img_GT.shape # using matlab imresize img_LQ = util.imresize_np(img_GT, 1 / scale, True) if img_LQ.ndim == 2: img_LQ = np.expand_dims(img_LQ, axis=2) if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_GT.shape if H < GT_size or W < GT_size: img_GT = cv2.resize(np.copy(img_GT), (GT_size, GT_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LQ = util.imresize_np(img_GT, 1 / scale, True) if img_LQ.ndim == 2: img_LQ = np.expand_dims(img_LQ, axis=2) H, W, C = img_LQ.shape LQ_size = GT_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LQ_size)) rnd_w = random.randint(0, max(0, W - LQ_size)) img_LQ = img_LQ[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] rnd_h_GT, rnd_w_GT = int(rnd_h * scale), int(rnd_w * scale) img_GT = img_GT[rnd_h_GT:rnd_h_GT + GT_size, rnd_w_GT:rnd_w_GT + GT_size, :] # augmentation - flip, rotate img_LQ, img_GT = util.augment([img_LQ, img_GT], self.opt['use_flip'], self.opt['use_rot']) # change color space if necessary if self.opt['color']: img_LQ = util.channel_convert( C, self.opt['color'], [img_LQ])[0] # TODO during val no definition # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LQ = img_LQ[:, :, [2, 1, 0]] img_GT = torch.from_numpy( np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_LQ = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() if LQ_path is None: LQ_path = GT_path return { 'LQ': img_LQ, 'GT': img_GT, 'LQ_path': LQ_path, 'GT_path': GT_path }
def __getitem__(self, index): # HR_path, LR_path = None, None fake real isReal = False scale = self.opt['scale'] HR_size = self.opt['HR_size'] # print(self.paths_LR[-10:]) # print(self.paths_HR[-10:]) # get LR image LR_path = self.paths_LR[index] # len(LR) > len(HR) img_LR = util.read_img(self.LR_env, LR_path) # get HR image if self.opt['prefix'] not in os.path.basename(LR_path): HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) weights_path = self.paths_weights[index] # load domain distance weights .npy img_weights = np.load(weights_path)[0].transpose((1, 2, 0)) img_weights = cv2.resize(img_weights, (img_HR.shape[1], img_HR.shape[0]), interpolation=cv2.INTER_LINEAR) else: isReal = True numofHR = len(self.paths_HR) index_HR = np.random.randint(0, numofHR) HR_path = self.paths_HR[index_HR] img_HR = util.read_img(self.HR_env, HR_path) img_weights = np.ones_like(img_HR) # modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_HR.shape if H < HR_size or W < HR_size: img_HR = cv2.resize(np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LR = util.imresize_np(img_HR, 1 / scale, True) if img_LR.ndim == 2: img_LR = np.expand_dims(img_LR, axis=2) H, W, C = img_LR.shape # Href, Wref, Cref = img_TransRefer.shape LR_size = HR_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LR_size)) rnd_w = random.randint(0, max(0, W - LR_size)) img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :] if isReal: H_real, W_real, C_real = img_HR.shape rnd_h_real = random.randint(0, max(0, H_real - HR_size)) rnd_w_real = random.randint(0, max(0, W_real - HR_size)) img_HR = img_HR[rnd_h_real:rnd_h_real + HR_size, rnd_w_real:rnd_w_real + HR_size, :] img_weights = img_weights[rnd_h_real:rnd_h_real + HR_size, rnd_w_real:rnd_w_real + HR_size, :] else: rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale) img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] img_weights = img_weights[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :] # rnd_href = random.randint(0, max(0, Href - HR_size)) # rnd_wref = random.randint(0, max(0, Wref - HR_size)) # img_TransRefer = img_TransRefer[rnd_href:rnd_href + HR_size, rnd_wref:rnd_wref + HR_size, :] # augmentation - flip, rotate img_LR, img_HR, img_weights = util.augment([img_LR, img_HR, img_weights], self.opt['use_flip'], \ self.opt['use_rot']) # change color space if necessary if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_weights = torch.from_numpy(np.ascontiguousarray(np.transpose(img_weights, (2, 0, 1)))).float() img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() # img_TransRefer = torch.from_numpy(np.ascontiguousarray(np.transpose(img_TransRefer, (2, 0, 1)))).float() # Wavelet Trans if self.opt['phase'] == 'train': img_HR = img_HR.reshape([1, img_HR.shape[0], img_HR.shape[1], img_HR.shape[2]]) LL, H_cat = self.DWT2(img_HR) LL = LL[0]*0.5 H_cat = H_cat[0][0]*0.5+0.5 w_c, C, H, W = H_cat.shape H_cat = H_cat.reshape([w_c*C, H, W]) img_HR = img_HR[0].detach() if LR_path is None: LR_path = HR_path return {'LR': img_LR, 'HR': img_HR, 'weights': img_weights,'LR_path': LR_path, 'HR_path': HR_path, "isReal": isReal, 'wt_LL': LL.detach(), 'Ht_cat': H_cat.detach()}
def __getitem__(self, index): if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None): self._init_lmdb() GT_path, LQ_path = None, None scale = self.opt['scale'] GT_size = self.opt['GT_size'] img_GT_mask = None # get GT image GT_path = self.paths_GT[index] resolution = [int(s) for s in self.sizes_GT[index].split('_') ] if self.data_type == 'lmdb' else None img_GT = util.read_img(self.GT_env, GT_path, resolution) if self.opt[ 'phase'] != 'train': # modcrop in the validation / test phase img_GT = util.modcrop(img_GT, scale) if self.opt['color']: # change color space if necessary img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # get LQ image if self.paths_LQ: LQ_path = self.paths_LQ[index] resolution = [int(s) for s in self.sizes_LQ[index].split('_') ] if self.data_type == 'lmdb' else None img_LQ = util.read_img(self.LQ_env, LQ_path, resolution) else: # down-sampling on-the-fly # randomly scale during training if self.opt['phase'] == 'train': random_scale = random.choice(self.random_scale_list) H_s, W_s, _ = img_GT.shape def _mod(n, random_scale, scale, thres): rlt = int(n * random_scale) rlt = (rlt // scale) * scale return thres if rlt < thres else rlt H_s = _mod(H_s, random_scale, scale, GT_size) W_s = _mod(W_s, random_scale, scale, GT_size) img_GT = cv2.resize(img_GT, (W_s, H_s), interpolation=cv2.INTER_LINEAR) if img_GT.ndim == 2: img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR) H, W, _ = img_GT.shape # using matlab imresize img_LQ = util.imresize_np(img_GT, 1 / scale, True) if img_LQ.ndim == 2: img_LQ = np.expand_dims(img_LQ, axis=2) if self.opt['phase'] == 'train': # if the image size is too small H, W, _ = img_GT.shape if H < GT_size or W < GT_size: img_GT = cv2.resize(img_GT, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR) # using matlab imresize img_LQ = util.imresize_np(img_GT, 1 / scale, True) if img_LQ.ndim == 2: img_LQ = np.expand_dims(img_LQ, axis=2) H, W, C = img_LQ.shape LQ_size = GT_size // scale # randomly crop rnd_h = random.randint(0, max(0, H - LQ_size)) rnd_w = random.randint(0, max(0, W - LQ_size)) img_LQ = img_LQ[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] rnd_h_GT, rnd_w_GT = int(rnd_h * scale), int(rnd_w * scale) img_GT = img_GT[rnd_h_GT:rnd_h_GT + GT_size, rnd_w_GT:rnd_w_GT + GT_size, :] # augmentation - flip, rotate img_LQ, img_GT = util.augment([img_LQ, img_GT], self.opt['use_flip'], self.opt['use_rot']) # create edge mask for GT low_threshold = 25 ratio = 3 kernel_size = 5 img_GT_grayscale = cv2.cvtColor(img_GT, cv2.COLOR_BGR2GRAY) img_GT_blurred = cv2.blur(img_GT_grayscale, (kernel_size, kernel_size)) img_GT_blurred = 255 * img_GT_blurred # Now scale by 255 img_GT_blurred = img_GT_blurred.astype(np.uint8) detected_edges = cv2.Canny(img_GT_blurred, low_threshold, low_threshold * ratio, kernel_size) mask = detected_edges != 0 img_GT_mask = img_GT_grayscale * (mask[:, :].astype( img_GT_grayscale.dtype)) img_GT_mask = cv2.GaussianBlur(img_GT_mask, (3, 3), 0) img_GT_mask = np.expand_dims(img_GT_mask, 0) # cv2.imshow("window", img_GT_mask) # cv2.waitKey() if self.opt['color']: # change color space if necessary img_LQ = util.channel_convert( C, self.opt['color'], [img_LQ])[0] # TODO during val no definition # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LQ = img_LQ[:, :, [2, 1, 0]] img_GT = torch.from_numpy( np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_LQ = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() if LQ_path is None: LQ_path = GT_path return { 'LQ': img_LQ, 'GT': img_GT, 'LQ_path': LQ_path, 'GT_path': GT_path, 'GT_mask': img_GT_mask }
def __getitem__(self, index): HR_path, LR_path = None, None scale = self.opt['scale'] HR_size = self.opt['HR_size'] if HR_size: LR_size = HR_size // scale # Check if LR Path is provided if self.paths_LR: #If LR is provided, check if 'rand_flip_LR_HR' is enabled (Only will work if HR and LR images have the same initial size) during training if self.opt['rand_flip_LR_HR'] and ( self.LR_scale or scale == 1) and self.opt['phase'] == 'train': LRHRchance = random.uniform(0, 1) if self.opt['flip_chance']: flip_chance = self.opt['flip_chance'] else: flip_chance = 0.05 #print("Random Flip Enabled") # Normal case, no flipping: else: LRHRchance = 0. flip_chance = 0. #print("No Random Flip") # get HR and LR images # If enabled, random chance that LR and HR images are flipped # Normal case, no flipping # If img_LR (LR_path) doesn't exist, use img_HR (HR_path) if LRHRchance < (1 - flip_chance): HR_path = self.paths_HR[index] LR_path = self.paths_LR[index] if LR_path is None: LR_path = HR_path #print("HR kept") # Flipped case: # If img_HR (LR_path) doesn't exist, use img_HR (LR_path) else: HR_path = self.paths_LR[index] LR_path = self.paths_HR[index] if HR_path is None: HR_path = LR_path #print("HR flipped") # Read the LR and HR images from the provided paths img_LR = util.read_img(self.LR_env, LR_path) img_HR = util.read_img(self.HR_env, HR_path) # Even if LR dataset is provided, force to generate aug_downscale % of downscales OTF from HR # The code will later make sure img_LR has the correct size if self.opt['aug_downscale']: aug_downscale = self.opt['aug_downscale'] if np.random.rand() < aug_downscale: img_LR = img_HR # If LR is not provided, use HR and modify on the fly else: HR_path = self.paths_HR[index] img_HR = util.read_img(self.HR_env, HR_path) img_LR = img_HR # HR modcrop in the validation / test phase if self.opt['phase'] != 'train': img_HR = util.modcrop(img_HR, scale) # change color space if necessary if self.opt['color']: img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0] img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0] #Augmentations during training if self.opt['phase'] == 'train': #Validate there's an img_LR, if img_LR is None: img_LR = img_HR print("Image LR: ", LR_path, ( "was not loaded correctly, using HR pair to downscale on the fly." )) #Random Crop (reduce computing cost and adjust images to correct size first) if img_HR.shape[0] > HR_size or img_HR.shape[1] > HR_size: #Here the scale should be in respect to the images, not to the training scale (in case they are being scaled on the fly) if img_HR.shape[0] // img_LR.shape[0] is not img_HR.shape[ 1] // img_LR.shape[1]: print( "Warning: img_LR dimensions ratio does not match img_HR dimensions ratio for: ", HR_path) img_LR = img_HR scaleor = img_HR.shape[0] // img_LR.shape[0] img_HR, img_LR = augmentations.random_crop_pairs( img_HR, img_LR, HR_size, scaleor) #or if the HR images are too small, Resize to the HR_size size and fit LR pair to LR_size too if img_HR.shape[0] < HR_size or img_HR.shape[1] < HR_size: print("Warning: Image: ", HR_path, " size does not match HR size: (", HR_size, "). The image size is: ", img_HR.shape) # rescale HR image to the HR_size img_HR, _ = augmentations.resize_img(np.copy(img_HR), crop_size=(HR_size, HR_size), algo=cv2.INTER_LINEAR) # rescale LR image to the LR_size img_LR, _ = augmentations.resize_img(np.copy(img_LR), crop_size=(LR_size, LR_size), algo=cv2.INTER_LINEAR) #""" # randomly scale LR from HR during training if LR dataset is not provided # Also check if LR is not at the correct scale already if img_LR.shape[0] is not LR_size and img_LR.shape[ 1] is not LR_size: if self.LR_scale: # if manually provided and scale algorithms are provided, then: if self.scale_algos: ds_algo = self.scale_algos else: ds_algo = 777 else: # else, if for some reason img_LR is too large, default to matlab-like bicubic downscale #if not self.opt['aug_downscale']: #only print the warning if not being forced to use HR images instead of LR dataset (which is a known case) ds_algo = 777 print( "LR image is too large, auto generating new LR for: ", LR_path) img_LR, scale_interpol_algo = augmentations.scale_img( img_LR, scale, algo=ds_algo) #""" # Rotations. 'use_flip' = 180 or 270 degrees (mirror), 'use_rot' = 90 degrees, 'HR_rrot' = random rotations +-45 degrees if self.opt['use_flip'] and self.opt['use_rot'] and self.HR_rrot: if np.random.rand() > 0.5: img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) else: if np.random.rand( ) > 0.5: # randomize the random rotations, so half the images are the original img_HR, img_LR = augmentations.random_rotate_pairs( img_HR, img_LR, HR_size, scale) elif (self.opt['use_flip'] or self.opt['use_rot']) and not self.HR_rrot: # augmentation - flip, rotate img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \ self.opt['use_rot']) elif self.HR_rrot: if np.random.rand( ) > 0.5: # randomize the random rotations, so half the images are the original img_HR, img_LR = augmentations.random_rotate_pairs( img_HR, img_LR, HR_size, scale) # Final checks # if the resulting HR image size so far is too large or too small, resize HR to the correct size and downscale to generate a new LR on the fly if img_HR.shape[0] is not HR_size or img_HR.shape[1] is not HR_size: print("Image: ", HR_path, " size does not match HR size: (", HR_size, "). The image size is: ", img_HR.shape) # rescale HR image to the HR_size img_HR, _ = augmentations.resize_img(np.copy(img_HR), crop_size=(HR_size, HR_size), algo=cv2.INTER_LINEAR) if self.scale_algos: # if manually provided and scale algorithms are provided, then: ds_algo = self.scale_algos else: ## using matlab imresize to generate LR pair ds_algo = 777 img_LR, _ = augmentations.scale_img(img_HR, scale, algo=ds_algo) # Final checks # if the resulting LR so far does not have the correct dimensions, also generate a new HR- LR image pair on the fly if img_LR.shape[0] is not LR_size or img_LR.shape[0] is not LR_size: print("Image: ", LR_path, " size does not match LR size: (", HR_size // scale, "). The image size is: ", img_LR.shape) # rescale HR image to the HR_size img_HR, _ = augmentations.resize_img(np.copy(img_HR), crop_size=(HR_size, HR_size), algo=cv2.INTER_LINEAR) if self.scale_algos: # if manually provided and scale algorithms are provided, then: ds_algo = self.scale_algos else: ## using matlab imresize to generate LR pair ds_algo = 777 img_LR, _ = augmentations.scale_img(img_HR, scale, algo=ds_algo) # Add noise to HR if enabled if self.HR_noise: img_HR, hr_noise_algo = augmentations.noise_img( img_HR, noise_types=self.hr_noise_types) # Below are the LR On The Fly augmentations #""" #v LR blur if self.LR_blur: img_LR, blur_algo, blur_kernel_size = augmentations.blur_img( img_LR, blur_algos=self.blur_algos) #""" #""" #v LR primary noise if self.LR_noise: img_LR, noise_algo = augmentations.noise_img( img_LR, noise_types=self.noise_types) #v LR secondary noise if self.LR_noise2: img_LR, noise_algo2 = augmentations.noise_img( img_LR, noise_types=self.noise_types2) #""" #""" #v LR cutout / LR random erasing if self.LR_cutout and (self.LR_erasing != True): img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2) elif self.LR_erasing and (self.LR_cutout != True ): #only do cutout or erasing, not both img_LR = augmentations.random_erasing(img_LR) elif self.LR_cutout and self.LR_erasing: if np.random.rand() > 0.5: img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2, p=0.5) else: img_LR = augmentations.random_erasing(img_LR, p=0.5, modes=[3]) #""" #For testing and validation if self.opt['phase'] != 'train': #""" #v randomly downscale LR if enabled if self.LR_scale: img_LR, scale_interpol_algo = augmentations.scale_img( img_LR, scale, algo=self.scale_algos) #""" # Debug # Save img_LR and img_HR images to a directory to visualize what is the result of the on the fly augmentations # DO NOT LEAVE ON DURING REAL TRAINING # self.output_sample_imgs = True if self.opt['phase'] == 'train': if self.output_sample_imgs: import os LR_dir, im_name = os.path.split(LR_path) #baseHRdir, _ = os.path.split(HR_dir) #debugpath = os.path.join(baseHRdir, os.sep, 'sampleOTFimgs') debugpath = os.path.join( os.path.split(LR_dir)[0], 'sampleOTFimgs') #print(debugpath) if not os.path.exists(debugpath): os.makedirs(debugpath) import uuid hex = uuid.uuid4().hex cv2.imwrite( debugpath + "\\" + im_name + hex + '_LR.png', img_LR * 255 ) #random name to save + had to multiply by 255, else getting all black image cv2.imwrite( debugpath + "\\" + im_name + hex + '_HR.png', img_HR * 255 ) #random name to save + had to multiply by 255, else getting all black image # BGR to RGB, HWC to CHW, numpy to tensor if img_HR.shape[2] == 3: img_HR = img_HR[:, :, [2, 1, 0]] img_LR = img_LR[:, :, [2, 1, 0]] # BGRA to RGBA, HWC to CHW, numpy to tensor elif img_LR.shape[2] == 4: img_HR = img_HR[:, :, [2, 1, 0, 3]] img_LR = img_LR[:, :, [2, 1, 0, 3]] img_HR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float() img_LR = torch.from_numpy( np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() if LR_path is None: LR_path = HR_path return { 'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path }