Exemple #1
0
def save_pic_and_lmk(kk):
    shuru = kk
    if shuru == 0:
        e = 1  #return 0 输入为0,说明只有一张图
    else:
        lmk_dir = '/home/zhang/correctdata/data/landmark/'  #注意lmk文件的后缀为.txt
        pic_dir = '/home/zhang/correctdata/data/picture/'
        bbox_dir = '/home/zhang/correctdata/bbox/'
        length = len(shuru)
        for i in range(length):
            if i % 2 == 0:
                filename1 = pic_dir + shuru[i]
                '''filename2 = pic_dir+shuru[i+1]'''
                lmk1 = utils.read_mat(lmk_dir + shuru[i + 1] + '.txt')
                lmk2 = utils.read_mat(lmk_dir + shuru[i] + '.txt')
                lmk = 0.5 * lmk1 + 0.5 * lmk2
                image = plt.imread(filename1)

                #图一的landmark归一化
                bbox1 = utils.read_bbox(bbox_dir + shuru[i + 1] + '.rect')
                lmk1 = utils.norm_landmarks(lmk1, bbox1)
                image = image[bbox1[1]:bbox1[3], bbox1[0]:bbox1[2]]

                #图一图二的插值图的landmark归一化
                bbox2 = utils.read_bbox(bbox_dir + shuru[i] + '.rect')
                lmk = utils.norm_landmarks(lmk, bbox2)
                out = pwa.pwa(image.copy(), lmk1.copy(), lmk.copy(),
                              (256, 256))
                # 图片与lmk保存

                utils.save_landmarks(
                    lmk * 255, '/home/zhang/ming/save_for_lmk2/' +
                    shuru[i][:-5] + "%d" % (200 + i) + '.jpg' + '.txt')
                io.imsave(
                    '/home/zhang/ming/save_for_pic2/' + shuru[i][:-5] + "%d" %
                    (200 + i) + '.jpg', out)
Exemple #2
0
bbox_dir = os.path.join(root, 'bbox')

out_dir = os.path.join(root, 'crop')
if not os.path.exists(out_dir):
    os.makedirs(os.path.join(out_dir, 'data/picture'))
    os.makedirs(os.path.join(out_dir, 'data/landmark'))

for name in os.listdir(img_dir):
    img_name = name
    ldmk_name = name + '.txt'
    bbox_name = name + '.rect'
    img_path = os.path.join(img_dir, img_name)
    ldmk_path = os.path.join(ldmk_dir, ldmk_name)
    bbox_path = os.path.join(bbox_dir, bbox_name)

    img_out_path = img_path.replace(root,
                                    root + 'crop/').replace('.jpg', '.png')
    ldmk_out_path = ldmk_path.replace(root, root + 'crop/')

    img = plt.imread(img_path)
    bbox = utils.read_bbox(bbox_path)
    ldmk = utils.read_mat(ldmk_path)

    minx, miny, maxx, maxy = bbox
    ldmk -= [minx, miny]

    img = img[miny:maxy + 1, minx:maxx + 1, :]

    plt.imsave(img_out_path, img)
    utils.save_landmarks(ldmk, ldmk_out_path)
Exemple #3
0
    images = [os.path.join(img_dir, f) for f in file_list]
    landmarks = [os.path.join(landmark_dir, f + '.txt') for f in file_list]
    bboxes = [os.path.join(bbox_dir, f + '.rect') for f in file_list]

    img_out_dir = '/data/icme/align_by_ldmk/picture'
    landmarks_out_dir = '/data/icme/align_by_ldmk/landmark'
    t_out_dir = '/data/icme/align_by_ldmk/T'
    if not os.path.exists(img_out_dir):
        os.makedirs(img_out_dir)
    if not os.path.exists(landmarks_out_dir):
        os.makedirs(landmarks_out_dir)

    for img_path, bbox_path, landmark_path, f in zip(images, bboxes, landmarks,
                                                     file_list):

        bbox = utils.read_bbox(bbox_path)
        landmark = utils.read_mat(landmark_path)
        image = cv2.imread(img_path)

        image, landmark, T = aligner(image, landmark, bbox)

        # T[2, 0] /= image.shape[1]
        # T[2, 1] /= image.shape[0]
        # T[0:2, :] = np.linalg.inv(T[0:2, :])

        cv2.imwrite(os.path.join(img_out_dir, f), image)
        utils.save_landmarks(landmark,
                             os.path.join(landmarks_out_dir, f + '.txt'))
        utils.save_T(T, os.path.join(t_out_dir, f + '.txt'))
Exemple #4
0
                                 num_workers=4))

for i in range(len(a)):
    image, gt, t, name = next(batch_iterator)

    image = image.cuda()
    with torch.no_grad():
        pr = net.forward(image)

    pr = pr.cpu().data.numpy()
    gt = gt.data.numpy()
    t = t.data.numpy()
    pr = np.reshape(pr, (-1, 2))
    pr[:, 0] *= a.shape[1]
    pr[:, 1] *= a.shape[0]
    pr = a.aligner.inverse(pr, t[0])
    gt = np.reshape(gt, (-1, 2))
    all_pr.append(pr)
    all_gt.append(gt)
    # save prediction
    utils.save_landmarks(pr, os.path.join(save_dir, name[0] + '.txt'))

all_gt = np.stack(all_gt, axis=0)
all_pr = np.stack(all_pr, axis=0)

nme = metrics.nme.update(np.reshape(all_gt, (-1, 106, 2)),
                         np.reshape(all_pr, (-1, 106, 2)))
metrics.auc.update(nme)

print("NME: %f\nAUC: %f" % (metrics.nme.value, metrics.auc.value))
Exemple #5
0
        # plt.subplot(1, 3, 3)
        # plt.imshow(out)
        # plt.axis((0, 128, 128, 0))
        # plt.show()

        for k in range(106):
            cv2.circle(temp_out, (out_landmark[k, 0], out_landmark[k, 1]), 0,
                       (0, 255, 0))
        temp_out = cv2.resize(temp_out, (1024, 1024))
        # cv2.namedWindow('output', flags=cv2.WINDOW_NORMAL)
        # cv2.imshow('output', temp_out)
        # cv2.waitKey(0)
        # time.sleep(3)

        #创建新的名字
        temp_src_name = src_name[0:len(src_name) - 4]
        temp_dst_name = dst_name[0:len(dst_name) - 4]
        distort_image_name = temp_src_name + '_' + temp_dst_name + '.jpg'

        #保存扭曲图片
        imagefile = Image.fromarray(out).convert('RGB')
        imagefile.save(out_dir + 'images/' + distort_image_name)

        #保存picture_draws
        imagefile2 = Image.fromarray(temp_out).convert('RGB')
        imagefile2.save(out_dir + 'picture_draws/' + str(j) + '/' +
                        distort_image_name)

        #保存landmarks
        utils.save_landmarks(
            out_landmark, out_dir + 'landmarks/' + distort_image_name + '.txt')