Exemple #1
0
    def __init__(self,
                 data_dir,
                 device,
                 transform,
                 set_type='test',
                 year='2007',
                 display=False):
        self.data_dir = data_dir
        self.device = device
        self.transform = transform
        self.labelmap = VOC_CLASSES
        self.set_type = set_type
        self.year = year
        self.display = display

        # path
        self.devkit_path = os.path.join(data_dir, 'VOC' + year)
        self.annopath = os.path.join(data_dir, 'VOC2007', 'Annotations',
                                     '%s.xml')
        self.imgpath = os.path.join(data_dir, 'VOC2007', 'JPEGImages',
                                    '%s.jpg')
        self.imgsetpath = os.path.join(data_dir, 'VOC2007', 'ImageSets',
                                       'Main', set_type + '.txt')
        self.output_dir = self.get_output_dir('voc_eval/', self.set_type)

        # dataset
        self.dataset = VOCDetection(data_dir=data_dir,
                                    image_sets=[('2007', set_type)],
                                    transform=transform)
Exemple #2
0
def build_dataset(args, train_size, val_size, device):
    if args.dataset == 'voc':
        data_dir = os.path.join(args.root, 'VOCdevkit')
        num_classes = 20
        dataset = VOCDetection(data_dir=data_dir,
                               img_size=train_size,
                               transform=TrainTransforms(train_size),
                               color_augment=ColorTransforms(train_size),
                               mosaic=args.mosaic)

        evaluator = VOCAPIEvaluator(data_dir=data_dir,
                                    img_size=val_size,
                                    device=device,
                                    transform=ValTransforms(val_size))

    elif args.dataset == 'coco':
        data_dir = os.path.join(args.root, 'COCO')
        num_classes = 80
        dataset = COCODataset(data_dir=data_dir,
                              img_size=train_size,
                              image_set='train2017',
                              transform=TrainTransforms(train_size),
                              color_augment=ColorTransforms(train_size),
                              mosaic=args.mosaic)

        evaluator = COCOAPIEvaluator(data_dir=data_dir,
                                     img_size=val_size,
                                     device=device,
                                     transform=ValTransforms(val_size))

    else:
        print('unknow dataset !! Only support voc and coco !!')
        exit(0)

    return dataset, evaluator, num_classes
Exemple #3
0
        print("w, h: ", round(centroid.w, 2), round(centroid.h, 2), "area: ",
              round(centroid.w, 2) * round(centroid.h, 2))

    return centroids


if __name__ == "__main__":

    n_anchors = args.num_anchorbox
    img_size = args.img_size
    dataset = args.dataset

    loss_convergence = 1e-6
    iters_n = 1000

    dataset_voc = VOCDetection(data_dir=os.path.join(args.root, 'VOCdevkit'),
                               img_size=img_size)

    dataset_coco = COCODataset(data_dir=os.path.join(args.root, 'COCO'),
                               img_size=img_size)

    boxes = []
    print("The dataset size: ", len(dataset))
    print("Loading the dataset ...")
    # VOC
    for i in range(len(dataset_voc)):
        if i % 5000 == 0:
            print('Loading voc data [%d / %d]' % (i + 1, len(dataset_voc)))

        # For VOC
        img, _ = dataset_voc.pull_image(i)
        w, h = img.shape[1], img.shape[0]
Exemple #4
0
class VOCAPIEvaluator():
    """ VOC AP Evaluation class """
    def __init__(self,
                 data_dir,
                 device,
                 transform,
                 set_type='test',
                 year='2007',
                 display=False):
        self.data_dir = data_dir
        self.device = device
        self.transform = transform
        self.labelmap = VOC_CLASSES
        self.set_type = set_type
        self.year = year
        self.display = display

        # path
        self.devkit_path = os.path.join(data_dir, 'VOC' + year)
        self.annopath = os.path.join(data_dir, 'VOC2007', 'Annotations',
                                     '%s.xml')
        self.imgpath = os.path.join(data_dir, 'VOC2007', 'JPEGImages',
                                    '%s.jpg')
        self.imgsetpath = os.path.join(data_dir, 'VOC2007', 'ImageSets',
                                       'Main', set_type + '.txt')
        self.output_dir = self.get_output_dir('voc_eval/', self.set_type)

        # dataset
        self.dataset = VOCDetection(data_dir=data_dir,
                                    image_sets=[('2007', set_type)],
                                    transform=transform)

    def evaluate(self, net):
        net.eval()
        num_images = len(self.dataset)
        # all detections are collected into:
        #    all_boxes[cls][image] = N x 5 array of detections in
        #    (x1, y1, x2, y2, score)
        self.all_boxes = [[[] for _ in range(num_images)]
                          for _ in range(len(self.labelmap))]

        # timers
        det_file = os.path.join(self.output_dir, 'detections.pkl')

        for i in range(num_images):
            im, _ = self.dataset.pull_image(i)
            h, w, _ = im.shape
            scale = np.array([[w, h, w, h]])

            # preprocess
            x = self.transform(im)[0]
            x = x.unsqueeze(0).to(self.device)

            t0 = time.time()
            # forward
            bboxes, scores, cls_inds = net(x)
            detect_time = time.time() - t0
            # rescale
            bboxes *= scale

            for j in range(len(self.labelmap)):
                inds = np.where(cls_inds == j)[0]
                if len(inds) == 0:
                    self.all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
                    continue
                c_bboxes = bboxes[inds]
                c_scores = scores[inds]
                c_dets = np.hstack(
                    (c_bboxes, c_scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
                self.all_boxes[j][i] = c_dets

            if i % 500 == 0:
                print('im_detect: {:d}/{:d} {:.3f}s'.format(
                    i + 1, num_images, detect_time))

        with open(det_file, 'wb') as f:
            pickle.dump(self.all_boxes, f, pickle.HIGHEST_PROTOCOL)

        print('Evaluating detections')
        self.evaluate_detections(self.all_boxes)

        print('Mean AP: ', self.map)

    def parse_rec(self, filename):
        """ Parse a PASCAL VOC xml file """
        tree = ET.parse(filename)
        objects = []
        for obj in tree.findall('object'):
            obj_struct = {}
            obj_struct['name'] = obj.find('name').text
            obj_struct['pose'] = obj.find('pose').text
            obj_struct['truncated'] = int(obj.find('truncated').text)
            obj_struct['difficult'] = int(obj.find('difficult').text)
            bbox = obj.find('bndbox')
            obj_struct['bbox'] = [
                int(bbox.find('xmin').text),
                int(bbox.find('ymin').text),
                int(bbox.find('xmax').text),
                int(bbox.find('ymax').text)
            ]
            objects.append(obj_struct)

        return objects

    def get_output_dir(self, name, phase):
        """Return the directory where experimental artifacts are placed.
        If the directory does not exist, it is created.
        A canonical path is built using the name from an imdb and a network
        (if not None).
        """
        filedir = os.path.join(name, phase)
        if not os.path.exists(filedir):
            os.makedirs(filedir)
        return filedir

    def get_voc_results_file_template(self, cls):
        # VOCdevkit/VOC2007/results/det_test_aeroplane.txt
        filename = 'det_' + self.set_type + '_%s.txt' % (cls)
        filedir = os.path.join(self.devkit_path, 'results')
        if not os.path.exists(filedir):
            os.makedirs(filedir)
        path = os.path.join(filedir, filename)
        return path

    def write_voc_results_file(self, all_boxes):
        for cls_ind, cls in enumerate(self.labelmap):
            if self.display:
                print('Writing {:s} VOC results file'.format(cls))
            filename = self.get_voc_results_file_template(cls)
            with open(filename, 'wt') as f:
                for im_ind, index in enumerate(self.dataset.ids):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # the VOCdevkit expects 1-based indices
                    for k in range(dets.shape[0]):
                        f.write(
                            '{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.format(
                                index[1], dets[k, -1], dets[k, 0] + 1,
                                dets[k, 1] + 1, dets[k, 2] + 1,
                                dets[k, 3] + 1))

    def do_python_eval(self, use_07=True):
        cachedir = os.path.join(self.devkit_path, 'annotations_cache')
        aps = []
        # The PASCAL VOC metric changed in 2010
        use_07_metric = use_07
        print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
        if not os.path.isdir(self.output_dir):
            os.mkdir(self.output_dir)
        for i, cls in enumerate(self.labelmap):
            filename = self.get_voc_results_file_template(cls)
            rec, prec, ap = self.voc_eval(detpath=filename,
                                          classname=cls,
                                          cachedir=cachedir,
                                          ovthresh=0.5,
                                          use_07_metric=use_07_metric)
            aps += [ap]
            print('AP for {} = {:.4f}'.format(cls, ap))
            with open(os.path.join(self.output_dir, cls + '_pr.pkl'),
                      'wb') as f:
                pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
        if self.display:
            self.map = np.mean(aps)
            print('Mean AP = {:.4f}'.format(np.mean(aps)))
            print('~~~~~~~~')
            print('Results:')
            for ap in aps:
                print('{:.3f}'.format(ap))
            print('{:.3f}'.format(np.mean(aps)))
            print('~~~~~~~~')
            print('')
            print(
                '--------------------------------------------------------------'
            )
            print('Results computed with the **unofficial** Python eval code.')
            print(
                'Results should be very close to the official MATLAB eval code.'
            )
            print(
                '--------------------------------------------------------------'
            )
        else:
            self.map = np.mean(aps)
            print('Mean AP = {:.4f}'.format(np.mean(aps)))

    def voc_ap(self, rec, prec, use_07_metric=True):
        """ ap = voc_ap(rec, prec, [use_07_metric])
        Compute VOC AP given precision and recall.
        If use_07_metric is true, uses the
        VOC 07 11 point method (default:True).
        """
        if use_07_metric:
            # 11 point metric
            ap = 0.
            for t in np.arange(0., 1.1, 0.1):
                if np.sum(rec >= t) == 0:
                    p = 0
                else:
                    p = np.max(prec[rec >= t])
                ap = ap + p / 11.
        else:
            # correct AP calculation
            # first append sentinel values at the end
            mrec = np.concatenate(([0.], rec, [1.]))
            mpre = np.concatenate(([0.], prec, [0.]))

            # compute the precision envelope
            for i in range(mpre.size - 1, 0, -1):
                mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

            # to calculate area under PR curve, look for points
            # where X axis (recall) changes value
            i = np.where(mrec[1:] != mrec[:-1])[0]

            # and sum (\Delta recall) * prec
            ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
        return ap

    def voc_eval(self,
                 detpath,
                 classname,
                 cachedir,
                 ovthresh=0.5,
                 use_07_metric=True):
        if not os.path.isdir(cachedir):
            os.mkdir(cachedir)
        cachefile = os.path.join(cachedir, 'annots.pkl')
        # read list of images
        with open(self.imgsetpath, 'r') as f:
            lines = f.readlines()
        imagenames = [x.strip() for x in lines]
        if not os.path.isfile(cachefile):
            # load annots
            recs = {}
            for i, imagename in enumerate(imagenames):
                recs[imagename] = self.parse_rec(self.annopath % (imagename))
                if i % 100 == 0 and self.display:
                    print('Reading annotation for {:d}/{:d}'.format(
                        i + 1, len(imagenames)))
            # save
            if self.display:
                print('Saving cached annotations to {:s}'.format(cachefile))
            with open(cachefile, 'wb') as f:
                pickle.dump(recs, f)
        else:
            # load
            with open(cachefile, 'rb') as f:
                recs = pickle.load(f)

        # extract gt objects for this class
        class_recs = {}
        npos = 0
        for imagename in imagenames:
            R = [obj for obj in recs[imagename] if obj['name'] == classname]
            bbox = np.array([x['bbox'] for x in R])
            difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
            det = [False] * len(R)
            npos = npos + sum(~difficult)
            class_recs[imagename] = {
                'bbox': bbox,
                'difficult': difficult,
                'det': det
            }

        # read dets
        detfile = detpath.format(classname)
        with open(detfile, 'r') as f:
            lines = f.readlines()
        if any(lines) == 1:

            splitlines = [x.strip().split(' ') for x in lines]
            image_ids = [x[0] for x in splitlines]
            confidence = np.array([float(x[1]) for x in splitlines])
            BB = np.array([[float(z) for z in x[2:]] for x in splitlines])

            # sort by confidence
            sorted_ind = np.argsort(-confidence)
            sorted_scores = np.sort(-confidence)
            BB = BB[sorted_ind, :]
            image_ids = [image_ids[x] for x in sorted_ind]

            # go down dets and mark TPs and FPs
            nd = len(image_ids)
            tp = np.zeros(nd)
            fp = np.zeros(nd)
            for d in range(nd):
                R = class_recs[image_ids[d]]
                bb = BB[d, :].astype(float)
                ovmax = -np.inf
                BBGT = R['bbox'].astype(float)
                if BBGT.size > 0:
                    # compute overlaps
                    # intersection
                    ixmin = np.maximum(BBGT[:, 0], bb[0])
                    iymin = np.maximum(BBGT[:, 1], bb[1])
                    ixmax = np.minimum(BBGT[:, 2], bb[2])
                    iymax = np.minimum(BBGT[:, 3], bb[3])
                    iw = np.maximum(ixmax - ixmin, 0.)
                    ih = np.maximum(iymax - iymin, 0.)
                    inters = iw * ih
                    uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
                           (BBGT[:, 2] - BBGT[:, 0]) *
                           (BBGT[:, 3] - BBGT[:, 1]) - inters)
                    overlaps = inters / uni
                    ovmax = np.max(overlaps)
                    jmax = np.argmax(overlaps)

                if ovmax > ovthresh:
                    if not R['difficult'][jmax]:
                        if not R['det'][jmax]:
                            tp[d] = 1.
                            R['det'][jmax] = 1
                        else:
                            fp[d] = 1.
                else:
                    fp[d] = 1.

            # compute precision recall
            fp = np.cumsum(fp)
            tp = np.cumsum(tp)
            rec = tp / float(npos)
            # avoid divide by zero in case the first detection matches a difficult
            # ground truth
            prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
            ap = self.voc_ap(rec, prec, use_07_metric)
        else:
            rec = -1.
            prec = -1.
            ap = -1.

        return rec, prec, ap

    def evaluate_detections(self, box_list):
        self.write_voc_results_file(box_list)
        self.do_python_eval()
Exemple #5
0
    # cuda
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # dataset and evaluator
    if args.dataset == 'voc':
        data_dir = os.path.join(args.root, 'VOCdevkit')
        class_names = VOC_CLASSES
        class_indexs = None
        num_classes = 20
        anchor_size = config.MULTI_ANCHOR_SIZE
        dataset = VOCDetection(data_dir=data_dir, img_size=args.img_size)

    elif args.dataset == 'coco':
        data_dir = os.path.join(args.root, 'COCO')
        class_names = coco_class_labels
        class_indexs = coco_class_index
        num_classes = 80
        anchor_size = config.MULTI_ANCHOR_SIZE_COCO
        dataset = COCODataset(data_dir=data_dir,
                              img_size=args.img_size,
                              image_set='val2017')

    else:
        print('unknow dataset !! Only support voc and coco !!')
        exit(0)
Exemple #6
0
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # input size
    input_size = args.input_size

    # dataset and evaluator
    if args.dataset == 'voc':
        data_dir = os.path.join(args.root, 'VOCdevkit')
        class_names = VOC_CLASSES
        class_indexs = None
        num_classes = 20
        dataset = VOCDetection(data_dir=data_dir,
                               image_sets=[('2007', 'test')])

    elif args.dataset == 'coco':
        data_dir = os.path.join(args.root, 'COCO')
        class_names = coco_class_labels
        class_indexs = coco_class_index
        num_classes = 80
        dataset = COCODataset(data_dir=data_dir, image_set='val')

    class_colors = [(np.random.randint(255), np.random.randint(255),
                     np.random.randint(255)) for _ in range(num_classes)]

    # model
    model_name = args.version
    print('Model: ', model_name)
Exemple #7
0
    #Validation data loader
    datase_v = TransformedCocoDataset(
        cocoRoot + "val2017/val2017", cocoRoot +
        "annotations_trainval2017/annotations/instances_val2017.json")

    dataLoader_v = DataLoader(datase_v,
                              batch_size,
                              num_workers=num_workers,
                              shuffle=False,
                              collate_fn=collate_fn,
                              pin_memory=cuda)
elif dataset == "VOC":
    voc_root = "/home/renatkhiz/data/VOCdevkit/"
    train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
    datase_t = VOCDetection(
        voc_root, train_sets,
        SSDAugmentation(size=(height, width), mean=(0, 0, 0)),
        AnnotationTransform())

dataLoader_t = DataLoader(datase_t,
                          batch_size,
                          num_workers=num_workers,
                          shuffle=True,
                          collate_fn=collate_fn,
                          pin_memory=cuda)

model_cpu = ssd.VGGSSD(num_classes=num_classes)
model_init(model_cpu)
if cuda:
    model = torch.nn.DataParallel(model_cpu).cuda()
else:
    model = model_cpu