def main(args): # -------------------------------------------------------------------------- # DATA logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args, args.train_file, skip_no_answer=True) logger.info('Num train examples = %d' % len(train_exs)) dev_exs = utils.load_data(args, args.dev_file) logger.info('Num dev examples = %d' % len(dev_exs)) # If we are doing offician evals then we need to: # 1) Load the original text to retrieve spans from offsets. # 2) Load the (multiple) text answers for each question. if args.official_eval: dev_texts = utils.load_text(args.dev_json) dev_offsets = {ex['id']: ex['offsets'] for ex in dev_exs} dev_answers = utils.load_answers(args.dev_json) # -------------------------------------------------------------------------- # MODEL logger.info('-' * 100) start_epoch = 0 if args.checkpoint and os.path.isfile(args.model_file + '.checkpoint'): # Just resume training, no modifications. logger.info('Found a checkpoint...') checkpoint_file = args.model_file + '.checkpoint' model, start_epoch = DocReader.load_checkpoint(checkpoint_file, args) else: # Training starts fresh. But the model state is either pretrained or # newly (randomly) initialized. if args.pretrained: logger.info('Using pretrained model...') model = DocReader.load(args.pretrained, args) if args.expand_dictionary: logger.info('Expanding dictionary for new data...') # Add words in training + dev examples words = utils.load_words(args, train_exs + dev_exs) added_words = model.expand_dictionary(words) # Load pretrained embeddings for added words if args.embedding_file: model.load_embeddings(added_words, args.embedding_file) logger.info('Expanding char dictionary for new data...') # Add words in training + dev examples chars = utils.load_chars(args, train_exs + dev_exs) added_chars = model.expand_char_dictionary(chars) # Load pretrained embeddings for added words if args.char_embedding_file: model.load_char_embeddings(added_chars, args.char_embedding_file) else: logger.info('Training model from scratch...') model = init_from_scratch(args, train_exs, dev_exs) # Set up partial tuning of embeddings if args.tune_partial > 0: logger.info('-' * 100) logger.info('Counting %d most frequent question words' % args.tune_partial) top_words = utils.top_question_words( args, train_exs, model.word_dict ) for word in top_words[:5]: logger.info(word) logger.info('...') for word in top_words[-6:-1]: logger.info(word) model.tune_embeddings([w[0] for w in top_words]) # Set up optimizer model.init_optimizer() # Use the GPU? if args.cuda: model.cuda() # Use multiple GPUs? if args.parallel: model.parallelize() # -------------------------------------------------------------------------- # DATA ITERATORS # Two datasets: train and dev. If we sort by length it's faster. logger.info('-' * 100) logger.info('Make data loaders') train_dataset = data.ReaderDataset(train_exs, model, single_answer=True) if args.sort_by_len: train_sampler = data.SortedBatchSampler(train_dataset.lengths(), args.batch_size, shuffle=True) else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) # if args.use_sentence_selector: # train_batcher = vector.sentence_batchifier(model, single_answer=True) # batching_function = train_batcher.batchify # else: batching_function = vector.batchify train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.data_workers, collate_fn=batching_function, pin_memory=args.cuda, ) dev_dataset = data.ReaderDataset(dev_exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) # if args.use_sentence_selector: # dev_batcher = vector.sentence_batchifier(model, single_answer=False) # batching_function = dev_batcher.batchify # else: batching_function = vector.batchify dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=batching_function, pin_memory=args.cuda, ) # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP logger.info('-' * 100) logger.info('Starting training...') stats = {'timer': utils.Timer(), 'epoch': 0, 'best_valid': 0} # -------------------------------------------------------------------------- # QUICKLY VALIDATE ON PRETRAINED MODEL if args.global_mode == "test": result1 = validate_unofficial(args, dev_loader, model, stats, mode='dev') result2 = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) print(result2[args.valid_metric]) print(result1["exact_match"]) validate_adversarial(args, model, stats, mode="dev") exit(0) for epoch in range(start_epoch, args.num_epochs): stats['epoch'] = epoch # Train train(args, train_loader, model, stats) # Validate unofficial (train) validate_unofficial(args, train_loader, model, stats, mode='train') # Validate unofficial (dev) result = validate_unofficial(args, dev_loader, model, stats, mode='dev') # Validate official if args.official_eval: result = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) # Save best valid if args.valid_metric is None or args.valid_metric == 'None': model.save(args.model_file) elif result[args.valid_metric] > stats['best_valid']: logger.info('Best valid: %s = %.2f (epoch %d, %d updates)' % (args.valid_metric, result[args.valid_metric], stats['epoch'], model.updates)) model.save(args.model_file) stats['best_valid'] = result[args.valid_metric]
def main(args): # -------------------------------------------------------- # Data logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args, args.train_file, skip_no_answer=True) logger.info('Num train examples = %d' % len(train_exs)) dev_exs = utils.load_data(args, args.dev_file) logger.info('Num dev examples = %d' % len(dev_exs)) # If we are doing offician evals then we need to: # 1) Load the original text to retrieve spans from offsets. # 2) Load the (multiple) text answers for each question. if args.official_eval: dev_texts = utils.load_text(args.dev_json) dev_offsets = {ex['id']: ex['offsets'] for ex in dev_exs} dev_answers = utils.load_answers(args.dev_json) # -------------------------------------------------------- # Model logger.info('-' * 100) start_epoch = 0 logger.info('Training model from scratch...') model = init_from_scratch(args, train_exs, dev_exs) # Set up partial tuning of embeddings if args.tune_partial > 0: logger.info('-' * 100) logger.info('Counting %d most frequent question words' % args.tune_partial) top_words = utils.top_question_words(args, train_exs, model.word_dict) for word in top_words[:5]: logger.info(word) logger.info('...') for word in top_words[-6:-1]: logger.info(word) model.tune_embeddings([w[0] for w in top_words]) # Set up optimizer model.init_optimizer() # Use the GPU? if args.cuda: model.cuda() # Use multiple GPUs? if args.parallel: model.parallelize() # -------------------------------------------------------------------------- # DATA ITERATORS # Two datasets: train and dev. If we sort by length it's faster. logger.info('-' * 100) logger.info('Make data loaders') train_dataset = data.ReaderDataset(train_exs, model, single_answer=True) if args.sort_by_len: train_sampler = data.SortedBatchSampler( train_dataset.lengths(), args.batch_size, shuffle=True) # shuffle设置为true每个batch重新打乱顺序 else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, # 每个batch加载多少个样本 sampler=train_sampler, # 从数据集中提取样本的策略,如果指定,则忽略shuffle参数 num_workers=args.data_workers, # 用多少个子进程加载数据 collate_fn=vector.batchify, # 合并样本形成小批量 pin_memory=args.cuda, # 如果为true,那么数据加载器将张量复制到cuda固定的内存中,然后再返回 ) dev_dataset = data.ReaderDataset(dev_exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP logger.info('-' * 100) logger.info('Starting training...') stats = {'timer': utils.Timer(), 'epoch': 0, 'best_valid': 0} for epoch in range(start_epoch, args.num_epochs): stats['epoch'] = epoch # train train(args, train_loader, model, stats) # Validate unofficial (train) validate_unofficial(args, train_loader, model, stats, mode='train') # Validate unofficial (dev) result = validate_unofficial(args, dev_loader, model, stats, mode='dev') # Validate official if args.official_eval: result = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) # Save best valid if result[args.valid_metric] > stats['best_valid']: logger.info('Best valid: %s = %.2f (epoch %d, %d updates)' % (args.valid_metric, result[args.valid_metric], stats['epoch'], model.updates)) model.save(args.model_file) stats['best_valid'] = result[args.valid_metric]
def validate_adversarial(args, model, global_stats, mode="dev"): # create dataloader for dev sets, load thier jsons, integrate the function for idx, dataset_file in enumerate(args.adv_dev_json): predictions = {} logger.info("Validating Adversarial Dataset %s" % dataset_file) exs = utils.load_data(args, args.adv_dev_file[idx]) logger.info('Num dev examples = %d' % len(exs)) ## Create dataloader dev_dataset = data.ReaderDataset(exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) # if args.use_sentence_selector: # batching_function = vector.batchify_sentences # else: batching_function = vector.batchify dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=batching_function, pin_memory=args.cuda, ) texts = utils.load_text(dataset_file) offsets = {ex['id']: ex['offsets'] for ex in exs} answers = utils.load_answers(dataset_file) eval_time = utils.Timer() f1 = utils.AverageMeter() exact_match = utils.AverageMeter() examples = 0 bad_examples = 0 for ex in dev_loader: ex_id, batch_size = ex[-1], ex[0].size(0) chosen_offset = ex[-2] pred_s, pred_e, _ = model.predict(ex) for i in range(batch_size): if pred_s[i][0] >= len(offsets[ex_id[i]]) or pred_e[i][0] >= len(offsets[ex_id[i]]): bad_examples += 1 continue if args.use_sentence_selector: s_offset = chosen_offset[i][pred_s[i][0]][0] e_offset = chosen_offset[i][pred_e[i][0]][1] else: s_offset = offsets[ex_id[i]][pred_s[i][0]][0] e_offset = offsets[ex_id[i]][pred_e[i][0]][1] prediction = texts[ex_id[i]][s_offset:e_offset] predictions[ex_id[i]] = prediction ground_truths = answers[ex_id[i]] exact_match.update(utils.metric_max_over_ground_truths( utils.exact_match_score, prediction, ground_truths)) f1.update(utils.metric_max_over_ground_truths( utils.f1_score, prediction, ground_truths)) examples += batch_size logger.info('dev valid official for dev file %s : Epoch = %d | EM = %.2f | ' % (dataset_file, global_stats['epoch'], exact_match.avg * 100) + 'F1 = %.2f | examples = %d | valid time = %.2f (s)' % (f1.avg * 100, examples, eval_time.time())) orig_f1_score = 0.0 orig_exact_match_score = 0.0 adv_f1_scores = {} # Map from original ID to F1 score adv_exact_match_scores = {} # Map from original ID to exact match score adv_ids = {} all_ids = set() # Set of all original IDs f1 = exact_match = 0 dataset = json.load(open(dataset_file))['data'] for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: orig_id = qa['id'].split('-')[0] all_ids.add(orig_id) if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + ' will receive score 0.' # logger.info(message) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] cur_exact_match = utils.metric_max_over_ground_truths(utils.exact_match_score, prediction, ground_truths) cur_f1 = utils.metric_max_over_ground_truths(utils.f1_score, prediction, ground_truths) if orig_id == qa['id']: # This is an original example orig_f1_score += cur_f1 orig_exact_match_score += cur_exact_match if orig_id not in adv_f1_scores: # Haven't seen adversarial example yet, so use original for adversary adv_ids[orig_id] = orig_id adv_f1_scores[orig_id] = cur_f1 adv_exact_match_scores[orig_id] = cur_exact_match else: # This is an adversarial example if (orig_id not in adv_f1_scores or adv_ids[orig_id] == orig_id or adv_f1_scores[orig_id] > cur_f1): # Always override if currently adversary currently using orig_id adv_ids[orig_id] = qa['id'] adv_f1_scores[orig_id] = cur_f1 adv_exact_match_scores[orig_id] = cur_exact_match orig_f1 = 100.0 * orig_f1_score / len(all_ids) orig_exact_match = 100.0 * orig_exact_match_score / len(all_ids) adv_exact_match = 100.0 * sum(adv_exact_match_scores.values()) / len(all_ids) adv_f1 = 100.0 * sum(adv_f1_scores.values()) / len(all_ids) logger.info("For the file %s Original Exact Match : %.4f ; Original F1 : : %.4f | " % (dataset_file, orig_exact_match, orig_f1) + "Adversarial Exact Match : %.4f ; Adversarial F1 : : %.4f " % (adv_exact_match, adv_f1))
def main(args): # -------------------------------------------------------------------------- # DATA logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args, args.train_file, skip_no_answer=True) logger.info('Num train examples = %d' % len(train_exs)) dev_exs = utils.load_data(args, args.dev_file) logger.info('Num dev examples = %d' % len(dev_exs)) # If we are doing offician evals then we need to: # 1) Load the original text to retrieve spans from offsets. # 2) Load the (multiple) text answers for each question. if args.official_eval: dev_texts = utils.load_text(args.dev_json) dev_offsets = {ex['id']: ex['offsets'] for ex in dev_exs} dev_answers = utils.load_answers(args.dev_json) else: dev_texts = None dev_offsets = None dev_answers = None # -------------------------------------------------------------------------- # MODEL logger.info('-' * 100) start_epoch = 0 if args.checkpoint and os.path.isfile(args.model_file + '.checkpoint'): # Just resume training, no modifications. logger.info('Found a checkpoint...') checkpoint_file = args.model_file + '.checkpoint' model, start_epoch = DocReader.load_checkpoint(checkpoint_file, args) else: # Training starts fresh. But the model state is either pretrained or # newly (randomly) initialized. if args.pretrained: logger.info('Using pretrained model...') model = DocReader.load(args.pretrained, args) if args.expand_dictionary: logger.info('Expanding dictionary for new data...') # Add words in training + dev examples words = utils.load_words(args, train_exs + dev_exs) added_words = model.expand_dictionary(words) # Load pretrained embeddings for added words if args.embedding_file: model.load_embeddings(added_words, args.embedding_file) logger.info('Expanding char dictionary for new data...') # Add words in training + dev examples chars = utils.load_chars(args, train_exs + dev_exs) added_chars = model.expand_char_dictionary(chars) # Load pretrained embeddings for added words if args.char_embedding_file: model.load_char_embeddings(added_chars, args.char_embedding_file) else: logger.info('Training model from scratch...') model = init_from_scratch(args, train_exs, dev_exs) # Set up partial tuning of embeddings if args.tune_partial > 0: logger.info('-' * 100) logger.info('Counting %d most frequent question words' % args.tune_partial) top_words = utils.top_question_words(args, train_exs, model.word_dict) for word in top_words[:5]: logger.info(word) logger.info('...') for word in top_words[-6:-1]: logger.info(word) model.tune_embeddings([w[0] for w in top_words]) # Set up optimizer model.init_optimizer() # Use the GPU? if args.cuda: model.cuda() # Use multiple GPUs? if args.parallel: model.parallelize() # -------------------------------------------------------------------------- # DATA ITERATORS # Two datasets: train and dev. If we sort by length it's faster. logger.info('-' * 100) logger.info('Make data loaders') train_dataset = data.ReaderDataset(train_exs, model, single_answer=True) if args.sort_by_len: train_sampler = data.SortedBatchSampler(train_dataset.lengths(), args.batch_size, shuffle=True) else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) dev_dataset = data.ReaderDataset(dev_exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP logger.info('-' * 100) logger.info('Starting training...') stats = {'timer': utils.Timer(), 'epoch': 0, 'best_valid': 0} model_prefix = os.path.join(args.model_dir, args.model_name) kept_models = [] best_model_path = '' for epoch in range(start_epoch, args.num_epochs): stats['epoch'] = epoch # Train train(args, train_loader, model, stats) # Validate unofficial (train) logger.info('eval: train split unofficially...') validate_unofficial(args, train_loader, model, stats, mode='train') if args.official_eval: # Validate official (dev) logger.info('eval: dev split unofficially..') result = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) else: # Validate unofficial (dev) logger.info( 'train: evaluating dev split evaluating dev official...') result = validate_unofficial(args, dev_loader, model, stats, mode='dev') em = result['exact_match'] f1 = result['f1'] suffix = 'em_{:4.2f}-f1_{:4.2f}.mdl'.format(em, f1) # Save best valid model_file = '{}-epoch_{}-{}'.format(model_prefix, epoch, suffix) if args.valid_metric: if result[args.valid_metric] > stats['best_valid']: for f in glob.glob('{}-best*'.format(model_prefix)): os.remove(f) logger.info('eval: dev best %s = %.2f (epoch %d, %d updates)' % (args.valid_metric, result[args.valid_metric], stats['epoch'], model.updates)) model_file = '{}-best-epoch_{}-{}'.format( model_prefix, epoch, suffix) best_model_path = model_file model.save(model_file) stats['best_valid'] = result[args.valid_metric] for f in kept_models: os.remove(f) kept_models.clear() else: model.save(model_file) kept_models.append(model_file) if len(kept_models) >= args.early_stop: logger.info( 'Finished training due to %s not improved for %d epochs, best model is at: %s' % (args.valid_metric, args.early_stop, best_model_path)) return else: # just save model every epoch since no validation metric is given model.save(model_file)