def load_dataset(dataset_name, cv): opt = fake_dataset_opt(dataset_name, cv) # print(dataset_name) # print(opt.__dict__) # input() dataset, val_dataset, tst_dataset = create_trn_val_tst_dataset(opt) # create a dataset given opt.dataset_mode and other options return dataset, val_dataset, tst_dataset
def test(opt): trn_dataset, val_dataset, tst_dataset = create_trn_val_tst_dataset(opt) logger.info('The number of validation samples = %d' % len(val_dataset)) logger.info('The number of testing samples = %d' % len(tst_dataset)) model = create_model( opt) # create a model given opt.model and other options model.setup(opt) model.cuda() # test logger.info('Loading model : epoch-%d' % opt.eval_epoch) model.load_networks(opt.eval_epoch) logger.info('Finish loading model') acc = eval(model, val_dataset, tst_dataset, is_save=False, phase='val') logger.info('Val result acc %.4f' % (acc)) acc = eval(model, val_dataset, tst_dataset, is_save=False, phase='test') logger.info('Tst result acc %.4f' % (acc))
def train(opt): trn_dataset, val_dataset, tst_dataset = create_trn_val_tst_dataset(opt) dataset_size = len(trn_dataset) logger.info('The number of training samples = %d' % dataset_size) writer = SummaryWriter() model = create_model( opt) # create a model given opt.model and other options model.setup(opt) model.cuda() best_eval_acc = 0 # record the best eval UAR total_iters = 0 # the total number of training iterations best_eval_epoch = -1 # record the best eval epoch for epoch in range( 1, opt.niter + opt.niter_decay + 1 ): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq> epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch for i, data in enumerate(trn_dataset): # inner loop within one epoch iter_start_time = time.time( ) # timer for computation per iteration total_iters += 1 # opt.batch_size epoch_iter += opt.batch_size model.set_input( data) # unpack data from dataset and apply preprocessing model.optimize_parameters( epoch ) # calculate loss functions, get gradients, update network weights if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size logger.info('Cur epoch {}'.format(epoch) + ' loss ' + ' '.join( map(lambda x: '{}:{{{}:.4f}}'.format(x, x), model.loss_names)).format(**losses)) writer.add_scalars('training_loss', dict(losses), total_iters) if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations logger.info( 'saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' model.save_networks(save_suffix) iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs logger.info('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) model.save_networks('latest') model.save_networks(epoch) logger.info('End of training epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) model.update_learning_rate( logger) # update learning rates at the end of every epoch. acc = eval(model, val_dataset, tst_dataset) logger.info('Val result of epoch %d / %d acc %.4f ' % (epoch, opt.niter + opt.niter_decay, acc)) if acc > best_eval_acc: best_eval_epoch = epoch best_eval_acc = acc writer.close() # print best eval result logger.info('Best eval epoch %d found with acc %f' % (best_eval_epoch, best_eval_acc)) # test logger.info('Loading best model found on val set: epoch-%d' % best_eval_epoch) model.load_networks(best_eval_epoch) acc = eval(model, val_dataset, tst_dataset, is_save=True, phase='test') logger.info('Tst result acc %.4f' % (acc)) clean_chekpoints(opt.name, best_eval_epoch)
if __name__ == '__main__': teacher_path = 'checkpoints/ef_AVL_Adnn512,256,128_Vlstm128_maxpool_Lcnn128_fusion256,128run1/' # teacher_path = 'checkpoints/new_0416_simpleAE_ce_t1.0_f1.0_mse0.1_cycle0.1_run1' opt_path = os.path.join(teacher_path, 'train_opt.conf') opt = load_from_opt_record(opt_path) opt.isTrain = False # teacher model should be in test mode opt.gpu_ids = [0] opt.serial_batches = True opt.dataset_mode = 'iemocap_miss' setattr(opt, 'miss_num', 'mix') modality = 'L' for cv in range(1, 11): opt.cvNo = cv teacher_path_cv = os.path.join(teacher_path, str(cv)) dataset, val_dataset, tst_dataset = create_trn_val_tst_dataset( opt) # create a dataset given opt.dataset_mode and other options # model = MultiFusionMultiModel(opt) # model = NewTranslationModel(opt) model = EarlyFusionMultiModel(opt) model.cuda() model.load_networks_cv(teacher_path_cv) # extractor = MultiLayerFeatureExtractor(model, 'netC.module[4]') # save_root = 'analysis/teacher_feats/{}/'.format(modality) + str(cv) # if not os.path.exists(save_root): # os.makedirs(save_root) # extract(model, dataset, save_root, phase='trn', modality=modality) # extract(model, val_dataset, save_root, phase='val', modality=modality) # extract(model, tst_dataset, save_root, phase='tst', modality=modality) save_root = '/data2/lrc/Iemocap_feature/early_fusion_reps_mix'